The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
Let and be Banach spaces, a closed linear operator whose domain is dense in and the transpose of . The theorem asserts that the following conditions are equivalent:
Where and are the null space of and , respectively.
Note that there is always an inclusion , because if and , then . Likewise, there is an inclusion . So the non-trivial part of the above theorem is the opposite inclusion in the final two bullets.
Corollaries
Several corollaries are immediate from the theorem. For instance, a densely defined closed operator as above has if and only if the transpose has a continuous inverse. Similarly, if and only if has a continuous inverse.
Sketch of proof
Since the graph of T is closed, the proof reduces to the case when is a bounded operator between Banach spaces. Now, factors as . Dually, is
Now, if is closed, then it is Banach and so by the open mapping theorem, is a topological isomorphism. It follows that is an isomorphism and then . (More work is needed for the other implications.)