From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
In mathematics , the classifying space
BSU
(
n
)
{\displaystyle \operatorname {BSU} (n)}
for the special unitary group
SU
(
n
)
{\displaystyle \operatorname {SU} (n)}
is the base space of the universal
SU
(
n
)
{\displaystyle \operatorname {SU} (n)}
principal bundle
ESU
(
n
)
→
BSU
(
n
)
{\displaystyle \operatorname {ESU} (n)\rightarrow \operatorname {BSU} (n)}
. This means that
SU
(
n
)
{\displaystyle \operatorname {SU} (n)}
principal bundles over a CW complex up to isomorphism are in bijection with homotopy classes of its continuous maps into
BSU
(
n
)
{\displaystyle \operatorname {BSU} (n)}
. The isomorphism is given by pullback .
Definition
There is a canonical inclusion of complex oriented Grassmannians given by
Gr
~
n
(
C
k
)
↪
Gr
~
n
(
C
k
+
1
)
,
V
↦
V
×
{
0
}
{\displaystyle {\widetilde {\operatorname {Gr} }}_{n}(\mathbb {C} ^{k})\hookrightarrow {\widetilde {\operatorname {Gr} }}_{n}(\mathbb {C} ^{k+1}),V\mapsto V\times \{0\}}
. Its colimit is:
BSU
(
n
)
:=
Gr
~
n
(
C
∞
)
:=
lim
n
→
∞
Gr
~
n
(
C
k
)
.
{\displaystyle \operatorname {BSU} (n):={\widetilde {\operatorname {Gr} }}_{n}(\mathbb {C} ^{\infty }):=\lim _{n\rightarrow \infty }{\widetilde {\operatorname {Gr} }}_{n}(\mathbb {C} ^{k}).}
Since real oriented Grassmannians can be expressed as a homogeneous space by:
Gr
~
n
(
C
k
)
=
SU
(
n
+
k
)
/
(
SU
(
n
)
×
SU
(
k
)
)
{\displaystyle {\widetilde {\operatorname {Gr} }}_{n}(\mathbb {C} ^{k})=\operatorname {SU} (n+k)/(\operatorname {SU} (n)\times \operatorname {SU} (k))}
the group structure carries over to
BSU
(
n
)
{\displaystyle \operatorname {BSU} (n)}
.
Simplest classifying spaces
Since
SU
(
1
)
≅
1
{\displaystyle \operatorname {SU} (1)\cong 1}
is the trivial group ,
BSU
(
1
)
≅
{
∗
}
{\displaystyle \operatorname {BSU} (1)\cong \{*\}}
is the trivial topological space.
Since
SU
(
2
)
≅
Sp
(
1
)
{\displaystyle \operatorname {SU} (2)\cong \operatorname {Sp} (1)}
, one has
BSU
(
2
)
≅
BSp
(
1
)
≅
H
P
∞
{\displaystyle \operatorname {BSU} (2)\cong \operatorname {BSp} (1)\cong \mathbb {H} P^{\infty }}
.
Classification of principal bundles
Given a topological space
X
{\displaystyle X}
the set of
SU
(
n
)
{\displaystyle \operatorname {SU} (n)}
principal bundles on it up to isomorphism is denoted
Prin
SU
(
n
)
(
X
)
{\displaystyle \operatorname {Prin} _{\operatorname {SU} (n)}(X)}
. If
X
{\displaystyle X}
is a CW complex , then the map:[ 1]
[
X
,
BSU
(
n
)
]
→
Prin
SU
(
n
)
(
X
)
,
[
f
]
↦
f
∗
ESU
(
n
)
{\displaystyle [X,\operatorname {BSU} (n)]\rightarrow \operatorname {Prin} _{\operatorname {SU} (n)}(X),[f]\mapsto f^{*}\operatorname {ESU} (n)}
is bijective .
Cohomology ring
The cohomology ring of
BSU
(
n
)
{\displaystyle \operatorname {BSU} (n)}
with coefficients in the ring
Z
{\displaystyle \mathbb {Z} }
of integers is generated by the Chern classes :[ 2]
H
∗
(
BSU
(
n
)
;
Z
)
=
Z
[
c
2
,
…
,
c
n
]
.
{\displaystyle H^{*}(\operatorname {BSU} (n);\mathbb {Z} )=\mathbb {Z} [c_{2},\ldots ,c_{n}].}
Infinite classifying space
The canonical inclusions
SU
(
n
)
↪
SU
(
n
+
1
)
{\displaystyle \operatorname {SU} (n)\hookrightarrow \operatorname {SU} (n+1)}
induce canonical inclusions
BSU
(
n
)
↪
BSU
(
n
+
1
)
{\displaystyle \operatorname {BSU} (n)\hookrightarrow \operatorname {BSU} (n+1)}
on their respective classifying spaces. Their respective colimits are denoted as:
SU
:=
lim
n
→
∞
SU
(
n
)
;
{\displaystyle \operatorname {SU} :=\lim _{n\rightarrow \infty }\operatorname {SU} (n);}
BSU
:=
lim
n
→
∞
BSU
(
n
)
.
{\displaystyle \operatorname {BSU} :=\lim _{n\rightarrow \infty }\operatorname {BSU} (n).}
BSU
{\displaystyle \operatorname {BSU} }
is indeed the classifying space of
SU
{\displaystyle \operatorname {SU} }
.
See also
Literature
External links
References