Jump to content

Centered tree

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

On the left a centered tree, on the right a bicentered one. The numbers show each node's eccentricity.

In the mathematical subfield of graph theory, a centered tree is a tree with only one center, and a bicentered tree is a tree with two centers.

Given a graph, the eccentricity of a vertex v is defined as the greatest distance from v to any other vertex. A center of a graph is a vertex with minimal eccentricity. A graph can have an arbitrary number of centers. However, Jordan (1869) has proved that for trees, there are only two possibilities:

  1. The tree has precisely one center (centered trees).
  2. The tree has precisely two centers (bicentered trees). In this case, the two centers are adjacent.

A proof of this fact is given, for example, by Harary.[1]

Notes

  1. ^ (Harary 1969), Theorem 4.2

References

  • Jordan, Camille (1869). "Sur les assemblages de lignes". Journal für die reine und angewandte Mathematik (in French). 70 (2): 185–190.
  • Harary, Frank (1969). Graph Theory. Addison-Wesley Professional.