Jump to content

Cellular decomposition

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In geometric topology, a cellular decomposition G of a manifold M is a decomposition of M as the disjoint union of cells (spaces homeomorphic to n-balls Bn).

The quotient space M/G has points that correspond to the cells of the decomposition. There is a natural map from M to M/G, which is given the quotient topology. A fundamental question is whether M is homeomorphic to M/G. Bing's dogbone space is an example with M (equal to R3) not homeomorphic to M/G.

Definition

Cellular decomposition of is an open cover with a function for which:

  • Cells are disjoint: for any distinct , .
  • No set gets mapped to a negative number: .
  • Cells look like balls: For any and for any there exists a continuous map that is an isomorphism and also .

A cell complex is a pair where is a topological space and is a cellular decomposition of .

See also

References

  • Daverman, Robert J. (2007), Decompositions of manifolds, AMS Chelsea Publishing, Providence, RI, p. 22, arXiv:0903.3055, ISBN 978-0-8218-4372-7, MR 2341468