Jump to content

Cantor tree

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In mathematical set theory, the Cantor tree is either the full binary tree of height ω + 1, or a topological space related to this by joining its points with intervals.

It was introduced by Robert Lee Moore in the late 1920s as an example of a non-metrizable Moore space (Jones 1966).

References

  • Jones, F. Burton (1966), "Remarks on the normal Moore space metrization problem", in Bing, R. H.; Bean, R. J. (eds.), Topology Seminar, Wisconsin, 1965, Annals of Mathematics Studies, vol. 60, Princeton University Press, pp. 115–152, ISBN 978-0-691-08056-7, MR 0202100
  • Nyikos, Peter (1989), "The Cantor tree and the Fréchet–Urysohn property", in Ralph Kopperman; Prabudh Misra; Jack Reichman; Arron R. Todd (eds.), Papers on general topology and related category theory and topological algebra (New York, 1985/1987), Ann. New York Acad. Sci., vol. 552, New York: New York Acad. Sci., pp. 109–123, doi:10.1111/j.1749-6632.1989.tb22391.x, ISBN 978-0-89766-516-2, MR 1020779
  • Steen, Lynn Arthur; Seebach, J. Arthur Jr. (1995) [1978], Counterexamples in Topology (Dover reprint of 1978 ed.), Berlin, New York: Springer-Verlag, ISBN 978-0-486-68735-3, MR 0507446