Jump to content

c+-probability

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In statistics, a c+-probability is the probability that a contrast variable obtains a positive value.[1] Using a replication probability, the c+-probability is defined as follows: if we get a random draw from each group (or factor level) and calculate the sampled value of the contrast variable based on the random draws, then the c+-probability is the chance that the sampled values of the contrast variable are greater than 0 when the random drawing process is repeated infinite times. The c+-probability is a probabilistic index accounting for distributions of compared groups (or factor levels).[2]

The c+-probability and SMCV are two characteristics of a contrast variable. There is a link between SMCV and c+-probability.[1] [2] The SMCV and c+-probability provides a consistent interpretation to the strength of comparisons in contrast analysis.[2] When only two groups are involved in a comparison, the c+-probability becomes d+-probability which is the probability that the difference of values from two groups is positive.[3] To some extent, the d+-probability (especially in the independent situations) is equivalent to the well-established probabilistic index P(X > Y). Historically, the index P(X > Y) has been studied and applied in many areas.[4] [5] [6] [7] [8] The c+-probability and d+-probability have been used for data analysis in high-throughput experiments and biopharmaceutical research.[1] [2]

See also

References

  1. ^ a b c Zhang XHD (2009). "A method for effectively comparing gene effects in multiple conditions in RNAi and expression-profiling research". Pharmacogenomics. 10 (3): 345–58. doi:10.2217/14622416.10.3.345. PMID 20397965.
  2. ^ a b c d Zhang XHD (2011). Optimal High-Throughput Screening: Practical Experimental Design and Data Analysis for Genome-scale RNAi Research. Cambridge University Press. ISBN 978-0-521-73444-8.
  3. ^ Zhang XHD (2007). "A new method with flexible and balanced control of false negatives and false positives for hit selection in RNA interference high-throughput screening assays". Journal of Biomolecular Screening. 12 (5): 645–55. doi:10.1177/1087057107300645. PMID 17517904.
  4. ^ Owen DB, Graswell KJ, Hanson DL (1964). "Nonparametric upper confidence bounds for Pr(Y < X) and confidence limits for Pr(Y < X) when X and Y are normal". Journal of the American Statistical Association. 59: 906–24. doi:10.2307/2283110. hdl:2027/mdp.39015094992651.
  5. ^ Church JD, Harris B (1970). "The estimation of reliability from stress-strength relationships". Technometrics. 12: 49–54. doi:10.1080/00401706.1970.10488633.
  6. ^ Downton F (1973). "The estimation of Pr(Y < X) in normal case". Technometrics. 15: 551–8. doi:10.2307/1266860.
  7. ^ Reiser B, Guttman I (1986). "Statistical inference for of Pr(Y ≤ X) – normal case". Technometrics. 28: 253–7. doi:10.2307/1269081.
  8. ^ Acion L, Peterson JJ, Temple S, Arndt S (2006). "Probabilistic index: an intuitive non-parametric approach to measuring the size of treatment effects". Statistics in Medicine. 25 (4): 591–602. doi:10.1002/sim.2256. PMID 16143965.