Jump to content

Browder fixed-point theorem

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

The Browder fixed-point theorem is a refinement of the Banach fixed-point theorem for uniformly convex Banach spaces. It asserts that if is a nonempty convex closed bounded set in uniformly convex Banach space and is a mapping of into itself such that (i.e. is non-expansive), then has a fixed point.

History

Following the publication in 1965 of two independent versions of the theorem by Felix Browder and by William Kirk, a new proof of Michael Edelstein showed that, in a uniformly convex Banach space, every iterative sequence of a non-expansive map has a unique asymptotic center, which is a fixed point of . (An asymptotic center of a sequence , if it exists, is a limit of the Chebyshev centers for truncated sequences .) A stronger property than asymptotic center is Delta-limit of Teck-Cheong Lim, which in the uniformly convex space coincides with the weak limit if the space has the Opial property.

See also

References

  • Felix E. Browder, Nonexpansive nonlinear operators in a Banach space. Proc. Natl. Acad. Sci. U.S.A. 54 (1965) 1041–1044
  • William A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965) 1004–1006.
  • Michael Edelstein, The construction of an asymptotic center with a fixed-point property, Bull. Amer. Math. Soc. 78 (1972), 206-208.