Jump to content

Block reflector

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

"A block reflector is an orthogonal, symmetric matrix that reverses a subspace whose dimension may be greater than one."[1]

It is built out of many elementary reflectors.

It is also referred to as a triangular factor, and is a triangular matrix and they are used in the Householder transformation.

A reflector belonging to can be written in the form : where is the identity matrix for , is a scalar and belongs to .

LAPACK routines

Here are some of the LAPACK routines that apply to block reflectors

  • "*larft" forms the triangular vector T of a block reflector H=I-VTVH.
  • "*larzb" applies a block reflector or its transpose/conjugate transpose as returned by "*tzrzf" to a general matrix.
  • "*larzt" forms the triangular vector T of a block reflector H=I-VTVH as returned by "*tzrzf".
  • "*larfb" applies a block reflector or its transpose/conjugate transpose to a general rectangular matrix.

See also

References

  1. ^ Schreiber, Rober; Parlett, Beresford (2006). "Block Reflectors: Theory and Computation". SIAM Journal on Numerical Analysis. 25: 189–205. doi:10.1137/0725014.