Jump to content

Binomial process

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

A binomial process is a special point process in probability theory.

Definition

Let be a probability distribution and be a fixed natural number. Let be i.i.d. random variables with distribution , so for all .

Then the binomial process based on n and P is the random measure

where

Properties

Name

The name of a binomial process is derived from the fact that for all measurable sets the random variable follows a binomial distribution with parameters and :

Laplace-transform

The Laplace transform of a binomial process is given by

for all positive measurable functions .

Intensity measure

The intensity measure of a binomial process is given by

Generalizations

A generalization of binomial processes are mixed binomial processes. In these point processes, the number of points is not deterministic like it is with binomial processes, but is determined by a random variable . Therefore mixed binomial processes conditioned on are binomial process based on and .

Literature

  • Kallenberg, Olav (2017). Random Measures, Theory and Applications. Switzerland: Springer. doi:10.1007/978-3-319-41598-7. ISBN 978-3-319-41596-3.