Jump to content

Bing's recognition theorem

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In topology, a branch of mathematics, Bing's recognition theorem, named for R. H. Bing, asserts that a necessary and sufficient condition for a 3-manifold M to be homeomorphic to the 3-sphere is that every Jordan curve in M be contained within a topological ball. It is a weak version of the Poincaré conjecture.

References

  • Bing, R. H. (1958). "Necessary and sufficient conditions that a 3-manifold be S3". Annals of Mathematics. Second Series. 68 (1): 17–37. doi:10.2307/1970041. MR 0095471. Zbl 0081.39202. (Erratum: doi:10.2307/1970205)
  • Hempel, John (1976). 3-Manifolds. Annals of Mathematics Studies. Vol. 86. Princeton, NJ: Princeton University Press. doi:10.1090/chel/349. MR 0415619. Zbl 0345.57001.
  • Rolfsen, Dale (1990). Knots and links. Mathematics Lecture Series. Vol. 7 (Corrected reprint of the 1976 original ed.). Houston, TX: Publish or Perish, Inc. doi:10.1090/chel/346. ISBN 0-914098-16-0. MR 1277811. Zbl 0854.57002.