Jump to content

Berry–Robbins problem

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In mathematics, the Berry–Robbins problem asks whether there is a continuous map from configurations of n points in R3 to the flag manifold U(n)/Tn that is compatible with the action of the symmetric group on n points. It was posed by Berry and Robbins in 1997,[1] and solved positively by Atiyah in 2000.[2][3]

See also

References

  1. ^ Berry, Michael V.; Robbins, J. M. (1997), "Indistinguishability for quantum particles: spin, statistics and the geometric phase", Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 453 (1963): 1771–1790, Bibcode:1997RSPSA.453.1771B, doi:10.1098/rspa.1997.0096, ISSN 0962-8444, MR 1469170
  2. ^ Atiyah, Michael (2000), "The geometry of classical particles", Surveys in differential geometry, Surv. Differ. Geom., VII, Int. Press, Somerville, MA, pp. 1–15, MR 1919420
  3. ^ Atiyah, Michael (2001), "Configurations of points", Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 359 (1784): 1375–1387, Bibcode:2001RSPTA.359.1375A, doi:10.1098/rsta.2001.0840, ISSN 1364-503X, MR 1853626