Jump to content

Backpropagation through structure

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Backpropagation through structure (BPTS) is a gradient-based technique for training recursive neural networks, proposed in a 1996 paper written by Christoph Goller and Andreas Küchler.[1]

References

  1. ^ Goller, Christoph; Küchler, Andreas (1996). "Learning Task-Dependent Distributed Representations by Backpropagation Through Structure". Proceedings of International Conference on Neural Networks (ICNN'96). Vol. 1. pp. 347–352. CiteSeerX 10.1.1.49.1968. doi:10.1109/ICNN.1996.548916. ISBN 0-7803-3210-5. S2CID 6536466.