Jump to content

Analytically normal ring

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In algebra, an analytically normal ring is a local ring whose completion is a normal ring, in other words a domain that is integrally closed in its quotient field.

Zariski (1950) proved that if a local ring of an algebraic variety is normal, then it is analytically normal, which is in some sense a variation of Zariski's main theorem. Nagata (1958, 1962, Appendix A1, example 7) gave an example of a normal Noetherian local ring that is analytically reducible and therefore not analytically normal.

References

  • Nagata, Masayoshi (1958), "An example of a normal local ring which is analytically reducible", Mem. Coll. Sci. Univ. Kyoto. Ser. A Math., 31: 83–85, MR 0097395
  • Nagata, Masayoshi (1962), Local rings, Interscience Tracts in Pure and Applied Mathematics, vol. 13, New York-London: Interscience Publishers, ISBN 978-0470628652{{citation}}: CS1 maint: ignored ISBN errors (link)
  • Zariski, Oscar (1948), "Analytical irreducibility of normal varieties", Annals of Mathematics, Second Series, 49 (2): 352–361, doi:10.2307/1969284, JSTOR 1969284, MR 0024158
  • Zariski, Oscar (1950), "Sur la normalité analytique des variétés normales", Annales de l'Institut Fourier, 2: 161–164, doi:10.5802/aif.27, MR 0045413
  • Zariski, Oscar; Samuel, Pierre (1975) [1960], Commutative algebra. Vol. II, Berlin, New York: Springer-Verlag, ISBN 978-0-387-90171-8, MR 0389876