Jump to content

Analog image processing

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Analog image processing is the use of an optical computer to process physical, optical images[1] formed by light waves coming from an object, as opposed to the digital image processing[2] and its use of digital computers to process pixelated, digital images. Correspondingly, a range of digital image processing techniques possess direct physical analogs. For example, fast Fourier transform algorithms are commonly implemented in digital phase correlation and other digital image processing techniques.[3][4] These digital Fourier transforms can be considered to be the digitized approximation of methods utilizing Fourier transforming properties of an ideal lens.[5]

References

  1. ^ Momeni, Ali; Rouhi, Kasra; Fleury, Romain (2022-01-01). "Switchable and simultaneous spatiotemporal analog computing with computational graphene-based multilayers" (PDF). Carbon. 186: 599–611. arXiv:2104.10801. Bibcode:2022Carbo.186..599M. doi:10.1016/j.carbon.2021.10.001. ISSN 0008-6223.
  2. ^ Burger, Wilhelm; Burge, Mark J. (2022). "Digital Image Processing". Texts in Computer Science. doi:10.1007/978-3-031-05744-1. ISBN 978-3-031-05743-4. ISSN 1868-0941.
  3. ^ Preibisch, Stephan; Saalfeld, Stephan; Tomancak, Pavel (2009-04-03). "Globally optimal stitching of tiled 3D microscopic image acquisitions". Bioinformatics. 25 (11): 1463–1465. doi:10.1093/bioinformatics/btp184. ISSN 1367-4811. PMC 2682522. PMID 19346324.
  4. ^ Kyeremah, Charlotte; La, Jeffrey; Gharbi, Mohamed Amine; Yelleswarapu, Chandra S. (2022-03-01). "Exploring different textures of a nematic liquid crystal for quantitative Fourier phase contrast microscopy". Optics & Laser Technology. 147: 107631. Bibcode:2022OptLT.14707631K. doi:10.1016/j.optlastec.2021.107631. ISSN 0030-3992.
  5. ^ Lugt, A.V. (April 1964). "Signal detection by complex spatial filtering". IEEE Transactions on Information Theory. 10 (2): 139–145. doi:10.1109/tit.1964.1053650. hdl:2027.42/8080. ISSN 0018-9448.