From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
In mathematics and signal processing , the advanced z-transform is an extension of the z-transform , to incorporate ideal delays that are not multiples of the sampling time . The advanced z-transform is widely applied, for example, to accurately model processing delays in digital control . It is also known as the modified z-transform .
It takes the form
F
(
z
,
m
)
=
∑
k
=
0
∞
f
(
k
T
+
m
)
z
−
k
{\displaystyle F(z,m)=\sum _{k=0}^{\infty }f(kT+m)z^{-k}}
where
T is the sampling period
m (the "delay parameter") is a fraction of the sampling period
[
0
,
T
]
.
{\displaystyle [0,T].}
Properties
If the delay parameter, m , is considered fixed then all the properties of the z-transform hold for the advanced z-transform.
Linearity
Z
{
∑
k
=
1
n
c
k
f
k
(
t
)
}
=
∑
k
=
1
n
c
k
F
k
(
z
,
m
)
.
{\displaystyle {\mathcal {Z}}\left\{\sum _{k=1}^{n}c_{k}f_{k}(t)\right\}=\sum _{k=1}^{n}c_{k}F_{k}(z,m).}
Time shift
Z
{
u
(
t
−
n
T
)
f
(
t
−
n
T
)
}
=
z
−
n
F
(
z
,
m
)
.
{\displaystyle {\mathcal {Z}}\left\{u(t-nT)f(t-nT)\right\}=z^{-n}F(z,m).}
Damping
Z
{
f
(
t
)
e
−
a
t
}
=
e
−
a
m
F
(
e
a
T
z
,
m
)
.
{\displaystyle {\mathcal {Z}}\left\{f(t)e^{-a\,t}\right\}=e^{-a\,m}F(e^{a\,T}z,m).}
Time multiplication
Z
{
t
y
f
(
t
)
}
=
(
−
T
z
d
d
z
+
m
)
y
F
(
z
,
m
)
.
{\displaystyle {\mathcal {Z}}\left\{t^{y}f(t)\right\}=\left(-Tz{\frac {d}{dz}}+m\right)^{y}F(z,m).}
Final value theorem
lim
k
→
∞
f
(
k
T
+
m
)
=
lim
z
→
1
(
1
−
z
−
1
)
F
(
z
,
m
)
.
{\displaystyle \lim _{k\to \infty }f(kT+m)=\lim _{z\to 1}(1-z^{-1})F(z,m).}
Example
Consider the following example where
f
(
t
)
=
cos
(
ω
t
)
{\displaystyle f(t)=\cos(\omega t)}
:
F
(
z
,
m
)
=
Z
{
cos
(
ω
(
k
T
+
m
)
)
}
=
Z
{
cos
(
ω
k
T
)
cos
(
ω
m
)
−
sin
(
ω
k
T
)
sin
(
ω
m
)
}
=
cos
(
ω
m
)
Z
{
cos
(
ω
k
T
)
}
−
sin
(
ω
m
)
Z
{
sin
(
ω
k
T
)
}
=
cos
(
ω
m
)
z
(
z
−
cos
(
ω
T
)
)
z
2
−
2
z
cos
(
ω
T
)
+
1
−
sin
(
ω
m
)
z
sin
(
ω
T
)
z
2
−
2
z
cos
(
ω
T
)
+
1
=
z
2
cos
(
ω
m
)
−
z
cos
(
ω
(
T
−
m
)
)
z
2
−
2
z
cos
(
ω
T
)
+
1
.
{\displaystyle {\begin{aligned}F(z,m)&={\mathcal {Z}}\left\{\cos \left(\omega \left(kT+m\right)\right)\right\}\\&={\mathcal {Z}}\left\{\cos(\omega kT)\cos(\omega m)-\sin(\omega kT)\sin(\omega m)\right\}\\&=\cos(\omega m){\mathcal {Z}}\left\{\cos(\omega kT)\right\}-\sin(\omega m){\mathcal {Z}}\left\{\sin(\omega kT)\right\}\\&=\cos(\omega m){\frac {z\left(z-\cos(\omega T)\right)}{z^{2}-2z\cos(\omega T)+1}}-\sin(\omega m){\frac {z\sin(\omega T)}{z^{2}-2z\cos(\omega T)+1}}\\&={\frac {z^{2}\cos(\omega m)-z\cos(\omega (T-m))}{z^{2}-2z\cos(\omega T)+1}}.\end{aligned}}}
If
m
=
0
{\displaystyle m=0}
then
F
(
z
,
m
)
{\displaystyle F(z,m)}
reduces to the transform
F
(
z
,
0
)
=
z
2
−
z
cos
(
ω
T
)
z
2
−
2
z
cos
(
ω
T
)
+
1
,
{\displaystyle F(z,0)={\frac {z^{2}-z\cos(\omega T)}{z^{2}-2z\cos(\omega T)+1}},}
which is clearly just the z -transform of
f
(
t
)
{\displaystyle f(t)}
.
References