Jump to content

Abstract L-space

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In mathematics, specifically in order theory and functional analysis, an abstract L-space, an AL-space, or an abstract Lebesgue space is a Banach lattice whose norm is additive on the positive cone of X.[1]

In probability theory, it means the standard probability space.[2]

Examples

The strong dual of an AM-space with unit is an AL-space.[1]

Properties

The reason for the name abstract L-space is because every AL-space is isomorphic (as a Banach lattice) with some subspace of [1] Every AL-space X is an order complete vector lattice of minimal type; however, the order dual of X, denoted by X+, is not of minimal type unless X is finite-dimensional.[1] Each order interval in an AL-space is weakly compact.[1]

The strong dual of an AL-space is an AM-space with unit.[1] The continuous dual space (which is equal to X+) of an AL-space X is a Banach lattice that can be identified with , where K is a compact extremally disconnected topological space; furthermore, under the evaluation map, X is isomorphic with the band of all real Radon measures 𝜇 on K such that for every majorized and directed subset S of we have [1]

See also

  • Vector lattice – Partially ordered vector space, ordered as a lattice
  • AM-space – Concept in order theory

References

  1. ^ a b c d e f g Schaefer & Wolff 1999, pp. 242–250.
  2. ^ Takeyuki Hida, Stationary Stochastic Processes, p. 21