From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
Mathematical identity involving sums of binomial coefficients
Abel's binomial theorem , named after Niels Henrik Abel , is a mathematical identity involving sums of binomial coefficients . It states the following:
∑
k
=
0
m
(
m
k
)
(
w
+
m
−
k
)
m
−
k
−
1
(
z
+
k
)
k
=
w
−
1
(
z
+
w
+
m
)
m
.
{\displaystyle \sum _{k=0}^{m}{\binom {m}{k}}(w+m-k)^{m-k-1}(z+k)^{k}=w^{-1}(z+w+m)^{m}.}
Example
The case m = 2
(
2
0
)
(
w
+
2
)
1
(
z
+
0
)
0
+
(
2
1
)
(
w
+
1
)
0
(
z
+
1
)
1
+
(
2
2
)
(
w
+
0
)
−
1
(
z
+
2
)
2
=
(
w
+
2
)
+
2
(
z
+
1
)
+
(
z
+
2
)
2
w
=
(
z
+
w
+
2
)
2
w
.
{\displaystyle {\begin{aligned}&{}\quad {\binom {2}{0}}(w+2)^{1}(z+0)^{0}+{\binom {2}{1}}(w+1)^{0}(z+1)^{1}+{\binom {2}{2}}(w+0)^{-1}(z+2)^{2}\\&=(w+2)+2(z+1)+{\frac {(z+2)^{2}}{w}}\\&={\frac {(z+w+2)^{2}}{w}}.\end{aligned}}}
See also
References