Numerical analytic continuation
This article, Numerical analytic continuation, has recently been created via the Articles for creation process. Please check to see if the reviewer has accidentally left this template after accepting the draft and take appropriate action as necessary.
Reviewer tools: Inform author |
In many-body physics, the problem of analytic continuation refers to numerically extracting the spectral density of a Green function given its values on the imaginary axis. It is a necessary post-processing step for calculating dynamical properties of physical systems from quantum Monte Carlo simulations, which often compute Green function values only at imaginary-times or Matsubara frequencies.
Mathematically, the problem reduces to solving a Fredholm integral equation of the first kind with an ill-conditioned kernel. As a result, it is an ill-posed inverse problem with no unique solution and where a small noise on the input leads to large errors in the unregularized solution. There are different methods for solving this problem including the maximum entropy method.[1][2][3][4], the average spectrum method[5][6][7][8] and Pade approximation methods[9][10][11]
See also
References
- ^ Silver, R. N.; Sivia, D. S.; Gubernatis, J. E. (1990-02-01). "Maximum-entropy method for analytic continuation of quantum Monte Carlo data". Physical Review B. 41 (4): 2380–2389. doi:10.1103/PhysRevB.41.2380.
- ^ Jarrell, Mark; Gubernatis, J. E. (1996-05-01). "Bayesian inference and the analytic continuation of imaginary-time quantum Monte Carlo data". Physics Reports. 269 (3): 133–195. doi:10.1016/0370-1573(95)00074-7. ISSN 0370-1573.
- ^ Reymbaut, A.; Bergeron, D.; Tremblay, A.-M. S. (2015-08-27). "Maximum entropy analytic continuation for spectral functions with nonpositive spectral weight". Physical Review B. 92 (6): 060509. doi:10.1103/PhysRevB.92.060509.
- ^ Burnier, Yannis; Rothkopf, Alexander (2013-10-31). "Bayesian Approach to Spectral Function Reconstruction for Euclidean Quantum Field Theories". Physical Review Letters. 111 (18): 182003. doi:10.1103/PhysRevLett.111.182003.
- ^ White, S. R. (1991). Landau, David P.; Mon, K. K.; Schüttler, Heinz-Bernd (eds.). "The Average Spectrum Method for the Analytic Continuation of Imaginary-Time Data". Computer Simulation Studies in Condensed Matter Physics III. Springer Proceedings in Physics. Berlin, Heidelberg: Springer: 145–153. doi:10.1007/978-3-642-76382-3_13. ISBN 978-3-642-76382-3.
- ^ Sandvik, Anders W. (1998-05-01). "Stochastic method for analytic continuation of quantum Monte Carlo data". Physical Review B. 57 (17): 10287–10290. doi:10.1103/PhysRevB.57.10287.
- ^ Ghanem, Khaldoon; Koch, Erik (2020-02-10). "Average spectrum method for analytic continuation: Efficient blocked-mode sampling and dependence on the discretization grid". Physical Review B. 101 (8): 085111. doi:10.1103/PhysRevB.101.085111.
- ^ Ghanem, Khaldoon; Koch, Erik (2020-07-06). "Extending the average spectrum method: Grid point sampling and density averaging". Physical Review B. 102 (3): 035114. doi:10.1103/PhysRevB.102.035114.
- ^ Beach, K. S. D.; Gooding, R. J.; Marsiglio, F. (2000-02-15). "Reliable Pad\'e analytical continuation method based on a high-accuracy symbolic computation algorithm". Physical Review B. 61 (8): 5147–5157. doi:10.1103/PhysRevB.61.5147.
- ^ Beach, K. S. D.; Gooding, R. J.; Marsiglio, F. (2000-02-15). "Reliable Pad\'e analytical continuation method based on a high-accuracy symbolic computation algorithm". Physical Review B. 61 (8): 5147–5157. doi:10.1103/PhysRevB.61.5147.
- ^ Östlin, A.; Chioncel, L.; Vitos, L. (2012-12-06). "One-particle spectral function and analytic continuation for many-body implementation in the exact muffin-tin orbitals method". Physical Review B. 86 (23): 235107. doi:10.1103/PhysRevB.86.235107.