Bickley–Naylor functions

In physics, engineering, and applied mathematics, the Bickley–Naylor functions are a sequence of special functions arising in formulas for thermal radiation intensities in hot enclosures. The solutions are often quite complicated unless the problem is essentially one-dimensional[1] (such as the radiation field in a thin layer of gas between two parallel rectangular plates). These functions have practical applications in several engineering problems related to transport of thermal[2][3] or neutron[4], [5] radiation in systems with special symmetries (e.g. spherical or axial symmetry). W. G. Bickley was a British mathematician born in 1893.[6]
Definition
The nth Bickley−Naylor function is defined by
and it is classified as one of the generalized exponential integral functions.
All of the functions for positive integer n are monotonously decreasing functions, because is a decreasing function and is a positive increasing function for .
Properties
The integral defining the function generally cannot be evaluated analytically, but can be approximated to a desired accuracy with Riemann sums or other methods, taking the limit as a → 0 in the interval of integration, [a, π/2].
Alternative ways to define the function include the integral[7], integral forms the Bickley-Naylor function:
where is the modified Bessel function of the zeroth order. Also by definition we have .
Series Expansions
The series expansions of the first and second order Bickley functions are given by:
where γ is the Euler constant and
Reccurence Relation
The Bickley functions also satisfy the following recurrence relation [8]
where .
Asymptotic Expansions
The asymptotic expansions of Bickley functions are given as [9]
Successive Differentiation
Differentiating with respect to x gives
Sucessive differentiation yields
The values of these functions for different values of the argument x were often listed in tables of special functions in the era when numerical calculation of integrals was slow. A table that lists some approximate values of the three first functions Kin is shown below.
x | Ki1(x) | Ki2(x) | Ki3(x) |
---|---|---|---|
0 | 1.57 | 1.00 | 0.79 |
0.2 | 1.02 | 0.75 | 0.61 |
0.4 | 0.75 | 0.58 | 0.48 |
0.6 | 0.56 | 0.45 | 0.38 |
0.8 | 0.43 | 0.35 | 0.30 |
1.0 | 0.33 | 0.27 | 0.24 |
1.2 | 0.25 | 0.22 | 0.19 |
1.4 | 0.20 | 0.17 | 0.15 |
1.6 | 0.16 | 0.14 | 0.12 |
1.8 | 0.12 | 0.11 | 0.10 |
Computer Code
Computer code in Fortran is made available by Amos [10]
See also
References
- ^ Michael F. Modest, Radiative Heat Transfer, p. 282, Elsevier Science 2003
- ^ Z. Altaç, Exact series expansions, recurrence relations, properties and integrals of the generalized exponential integral functions, Journal of Quantitative Spectroscopy & Radiative Transfer 104 (2007) 310–325
- ^ Z. Altaç, Integrals Involving Bickley and Bessel Functions in Radiative Transfer, and Generalized Exponential Integral Functions, J. Heat Transfer 118(3), 789−792 (August 1, 1996)
- ^ T. Boševski, An Improved Collision Probability Method for Thermal-Neutron-Flux Calculation in a Cylindrical Reactor Cell, NUCLEAR SCIENCE AND ENGINEERING:. 42, 23−27 (1970)
- ^ E. E. Lewis and W. F. Miller, Computational Methods of Neutron Transport,John Wiley Sons, 1984.
- ^ G. S. Marliss W. A. Murray, William G. Bickley—An appreciation, Comput J (1969) 12 (4): 301–302.
- ^ A. Baricz, T. K. Pogany, Functional Inequalities for the Bickley Function, Mathematical Inequalities and Applications, Volume 17, Number 3 (2014), 989–1003
- ^ M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, pp. 483, Dover Publications Inc., (1972).
- ^ M. S. Milgram, Analytic method for the numerical solution of the integral transport equation for a homogeneous cylinder, Nucl. Sci. Eng. 68, 249-269 (1978).
- ^ D. E. Amos, ALGORITH 609: A portable FORTRAN Subroutine for the Bickley Functions Kin(x), ACM Transactions on Mathematical Software, December 1983, 789−792