Jump to content

Cartesian parallel manipulators

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Pjwiktor (talk | contribs) at 13:41, 18 December 2020 (replaced image files for Tripteron and Quadrupteron. Deleted image files of Pentapteron and Hexapteron. Fixed some typographical errors.). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Cartesian parallel manipulators move a platform using parallel connected kinematic linkages (`limbs') lined up with a Cartesian coordinate system[1]. Multiple limbs connect the moving platform to a base. Each limb is driven by a linear actuator and the linear actuators are mutually perpendicular. The term `parallel' here refers to the way that the kinematic linkages are put together, it does not connote geometric parallelism; i.e., equidistant lines. Manipulators may also be called `robots' or `mechanisms'.

Description

Cartesian parallel manipulators are in the intersection of two broader categories of manipulators: Cartesian and parallel. Cartesian manipulators are driven by mutually perpendicular linear actuators. They generally have a one-to-one correspondence between the linear positions of the actuators and the X, Y, Z position coordinates of the moving platform, making them easy to control. Most commonly, Cartesian manipulators are serial-connected; i.e., they consist of a single kinematic linkage chain. On the other hand, Cartesian parallel manipulators are parallel-connected, providing innate advantages[2] in terms of stiffness[3], precision[4], dynamic performance[5] [6]and in supporting heavy loads[7].

Configurations

Various types of Cartesian parallel manipulators are summarized here. Only fully parallel mechanisms are included; i.e., those having the same number of limbs as degrees of freedom of the moving-platform, with a single actuator per limb.

Multipteron family

Members of the Multipteron [8] family of manipulators have either 3, 4, 5 or 6 degrees of freedom (DoF). The Tripteron 3-DoF member has three translation degrees of freedom 3T DoF, with the subsequent members of the Multipteron family each adding a rotational R degree of freedom. Each member of the family has mutually perpendicular linear actuators connected to a fixed base. The moving platform is typically attached to the linear actuators through three geometrically parallel revolute R joints. See Kinematic pair for a description of shorthand joint notation used to describe manipulator configurations, like revolute R joint for example.

Tripteron

Tripteron

The 3-DoF Tripteron[9] [10] [11] [12] member of the Multipteron family has three parallel-connected kinematic chains consisting of a linear actuator (active prismatic P joint) in series with three revolute R joints 3(PRRR). Similar manipulators, with three parallelogram Pa limbs 3(PRPaR) are the Orthoglide[13] [14] and Parallel cube-manipulator[15]. The Pantepteron[16] is also similar to the Tripteron, with pantograph linkages to speed up the motion of the platform.

Qudrupteron

Quadrupteron

The 4-DoF Qudrupteron[17] has 3T1R DoF with (3PRRU)(PRRR) joint topology.

Pentapteron

The 5-DoF Pentateron[18] has 3T2R DoF with 5(PRRRR) joint topology.

Hexapteron

The 6-DoF Hexapteron[19] has 3T3R DoF with 6(PCRS) joint topology, with cylindrical C and spherical S joints.

Isoglide

The Isoglide family[20] [21][22][23] includes many different Cartesian parallel manipulators from 2-6 DoF.

Xactuator

Xactuator

The 4-DoF or 5-DoF Coupled Cartesian manipulators family[24] are gantry type Cartesian parallel manipulators with 3T1R DoF or 3T2R DoF.

References

  1. ^ Perler, Dominik (2020), "Descartes, René: Discours de la méthode pour bien conduire sa raison et chercher la vérité dans les sciences", Kindlers Literatur Lexikon (KLL), Stuttgart: J.B. Metzler, pp. 1–3, ISBN 978-3-476-05728-0, retrieved 2020-12-14
  2. ^ Z. Pandilov, V. Dukovski, Comparison of the characteristics between serial and parallel robots, Acta Technica Corviniensis-Bulletin of Engineering, Volume 7, Issue 1, Pages 143-160
  3. ^ Geldart, M; Webb, P; Larsson, H; Backstrom, M; Gindy, N; Rask, K (2003). "A direct comparison of the machining performance of a variax 5 axis parallel kinetic machining centre with conventional 3 and 5 axis machine tools". International Journal of Machine Tools and Manufacture. 43 (11): 1107–1116. doi:10.1016/s0890-6955(03)00119-6. ISSN 0890-6955.
  4. ^ "Vibration control for precision manufacturing using piezoelectric actuators". Precision Engineering. 20 (2): 151. 1997. doi:10.1016/s0141-6359(97)81235-4. ISSN 0141-6359.
  5. ^ R. Clavel, inventor, S.A. SovevaSwitzerland, assignee. Device for the movement and positioning of an element in space, USA patent number, 4,976,582 (1990)
  6. ^ Prempraneerach, Pradya (2014). "Delta parallel robot workspace and dynamic trajectory tracking of delta parallel robot". 2014 International Computer Science and Engineering Conference (ICSEC). IEEE. doi:10.1109/icsec.2014.6978242. ISBN 978-1-4799-4963-2.
  7. ^    Stewart D. A Platform with Six Degrees of Freedom. Proceedings of the Institution of Mechanical Engineers. 1965;180(1):371-386. doi:10.1243/PIME_PROC_1965_180_029_02  
  8. ^ Gosselin, Clement M.; Masouleh, Mehdi Tale; Duchaine, Vincent; Richard, Pierre-Luc; Foucault, Simon; Kong, Xianwen. "Parallel Mechanisms of the Multipteron Family: Kinematic Architectures and Benchmarking". Proceedings 2007 IEEE International Conference on Robotics and Automation. IEEE. doi:10.1109/robot.2007.363045. ISBN 1-4244-0602-1.
  9. ^ Gosselin, C. M., and Kong, X., 2004, “Cartesian Parallel Manipulators,” U.S. Patent No. 6,729,202
  10. ^ Xianwen Kong, Clément M. Gosselin, Kinematics and Singularity Analysis of a Novel Type of 3-CRR 3-DOF Translational Parallel Manipulator, The International Journal of Robotics Research Vol. 21, No. 9, September 2002, pp. 791-7
  11. ^ Kong, Xianwen; Gosselin, Clément M. (2002), "Type Synthesis of Linear Translational Parallel Manipulators", Advances in Robot Kinematics, Dordrecht: Springer Netherlands, pp. 453–462, ISBN 978-90-481-6054-9, retrieved 2020-12-14
  12. ^ Kim, Han Sung; Tsai, Lung-Wen (2002), "Evaluation of a Cartesian Parallel Manipulator", Advances in Robot Kinematics, Dordrecht: Springer Netherlands, pp. 21–28, ISBN 978-90-481-6054-9, retrieved 2020-12-14
  13. ^ Wenger, P.; Chablat, D. (2000), "Kinematic Analysis of a New Parallel Machine Tool: The Orthoglide", Advances in Robot Kinematics, Dordrecht: Springer Netherlands, pp. 305–314, ISBN 978-94-010-5803-2, retrieved 2020-12-14
  14. ^ Chablat, D.; Wenger, P. (2003). "Architecture optimization of a 3-DOF translational parallel mechanism for machining applications, the orthoglide". IEEE Transactions on Robotics and Automation. 19 (3): 403–410. doi:10.1109/tra.2003.810242. ISSN 1042-296X.
  15. ^ Liu, Xin-Jun; Jeong, Jay il; Kim, Jongwon (2003-10-24). "A three translational DoFs parallel cube-manipulator". Robotica. 21 (6): 645–653. doi:10.1017/s0263574703005198. ISSN 0263-5747.
  16. ^ Briot, S.; Bonev, I. A. (2009-01-06). "Pantopteron: A New Fully Decoupled 3DOF Translational Parallel Robot for Pick-and-Place Applications". Journal of Mechanisms and Robotics. 1 (2). doi:10.1115/1.3046125. ISSN 1942-4302.
  17. ^ Gosselin, C (2009-01-06). "Compact dynamic models for the tripteron and quadrupteron parallel manipulators". Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering. 223 (1): 1–12. doi:10.1243/09596518jsce605. ISSN 0959-6518.
  18. ^ Gosselin, Clement M.; Masouleh, Mehdi Tale; Duchaine, Vincent; Richard, Pierre-Luc; Foucault, Simon; Kong, Xianwen (2007). "Parallel Mechanisms of the Multipteron Family: Kinematic Architectures and Benchmarking". Proceedings 2007 IEEE International Conference on Robotics and Automation. IEEE. doi:10.1109/robot.2007.363045. ISBN 1-4244-0602-1.
  19. ^ Seward, Nicholas; Bonev, Ilian A. (2014). "A new 6-DOF parallel robot with simple kinematic model". 2014 IEEE International Conference on Robotics and Automation (ICRA). IEEE. doi:10.1109/icra.2014.6907449. ISBN 978-1-4799-3685-4.
  20. ^ Gogu, Grigore (2004). "Structural synthesis of fully-isotropic translational parallel robots via theory of linear transformations". European Journal of Mechanics - A/Solids. 23 (6): 1021–1039. doi:10.1016/j.euromechsol.2004.08.006. ISSN 0997-7538.
  21. ^ Gogu, Grigore (2007). "Structural synthesis of fully-isotropic parallel robots with Schönflies motions via theory of linear transformations and evolutionary morphology". European Journal of Mechanics - A/Solids. 26 (2): 242–269. doi:10.1016/j.euromechsol.2006.06.001. ISSN 0997-7538.
  22. ^ "Structural synthesis", Solid Mechanics and its Applications, Dordrecht: Springer Netherlands, pp. 299–328, 2008, ISBN 978-1-4020-5102-9, retrieved 2020-12-14
  23. ^ Gogu, G. (2009). "Structural synthesis of maximally regular T3R2-type parallel robots via theory of linear transformations and evolutionary morphology". Robotica. 27 (1): 79–101. doi:10.1017/s0263574708004542. ISSN 0263-5747.
  24. ^ Wiktor, Peter (2020). "Coupled Cartesian Manipulators". Mechanism and Machine Theory: 103903. doi:10.1016/j.mechmachtheory.2020.103903. ISSN 0094-114X.