Jump to content

Cartesian parallel manipulators

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Pjwiktor (talk | contribs) at 00:33, 15 December 2020 (added text, links, citations and figures). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Cartesian parallel manipulators move a platform using parallel connected kinematic linkages (`limbs' or `legs') lined up with a Cartesian coordinate system[1]. Multiple limbs connect the moving platform to a base. Each limb is driven by a linear actuator and the linear actuators are mutually perpendicular. By contrast, Cartesian manipulators typically consist of a single serial connected kinematic linkage of mutually perpendicular linear actuators. The term `parallel' here refers to the way that the kinematic linkages are put together, it does not connote geometric parallelism, i.e. equidistant lines.

Attributes

Cartesian parallel manipulators benefit from favorable attributes of both Cartesian and parallel manipulators. Cartesian manipulators have a simple intuitive layout that makes them easy to control. They generally have a one-to-one correspondence between the linear positions of the actuators and the X, Y, Z position coordinates of the moving platform. Compared to serial manipulators, the synergy of the cooperating limbs of parallel manipulators, working together to support the moving-platform, give them inherent advantages in terms of stiffness, precision, dynamic performance and supporting heavy loads.

Configurations

Various types of Cartesian parallel manipulators are summarized here. Only fully parallel mechanisms are included, i.e. those having the same number of limbs as degrees of freedom of the moving-platform, with a single actuator per limb.

Multipteron family

Members of the Multipteron [2] family of manipulators have either 3, 4, 5 or 6 degrees of freedom (DoF). The Tripteron 3-DoF member has three translation 3T degrees of freedom, with the subsequent members of the Multipteron family each adding a rotational R degree of freedom. Each members has mutually perpendicular linear actuators connected to a fixed base. The moving platform is typically attached to the linear actuators through three parallel revolute R joints.

Tripteron 3T

File:Tripteron.jpg
Tripteron

The Tripteron[3] [4] [5] [6] 3-DoF member of this family has three parallel-connected kinematic chains consisting of the linear actuator (prismatic P joint) in series with three revolute R joints 3(PRRR), or equivalently 3(CRR). Similar manipulators with three parallelogram Pa limbs 3(PRPaR) are the Orthoglide[7] [8] and Parallel cube-manipulator[9]. The limbs of the Pantepteron[10] correspond to pantograph linkages to speed up the motion of the platform compared to the Tripteron.

Qudrupteron 3T1R

File:Quadrupteron.png
Quadrupteron

The Qudrupteron[11] has 3T1R DoF with (3PRRU)(PRRR) joint topology.

Pentapteron 3T2R

File:Pentapteron.png
Pentapteron

The Pentateron[12] has 3T2R DoF with 5(PRRRR) joint topology.

Hexapteron 3T3R

File:Hexapteron.png
Hexapteron

The Hexapteron[13] has 3T3R DoF with 6(PCRS) joint topology.

Isoglide

The Isoglide family[14] [15][16][17] includes many different Cartesian parallel manipulators from 2-6 DoF.

Xactuator

Xactuator

The Coupled Cartesian manipulators family[18] are gantry type Cartesian parallel manipulators with 5-6 DoF.

References

  1. ^ Perler, Dominik (2020), "Descartes, René: Discours de la méthode pour bien conduire sa raison et chercher la vérité dans les sciences", Kindlers Literatur Lexikon (KLL), Stuttgart: J.B. Metzler, pp. 1–3, ISBN 978-3-476-05728-0, retrieved 2020-12-14
  2. ^ Gosselin, Clement M.; Masouleh, Mehdi Tale; Duchaine, Vincent; Richard, Pierre-Luc; Foucault, Simon; Kong, Xianwen. "Parallel Mechanisms of the Multipteron Family: Kinematic Architectures and Benchmarking". Proceedings 2007 IEEE International Conference on Robotics and Automation. IEEE. doi:10.1109/robot.2007.363045. ISBN 1-4244-0602-1.
  3. ^ Gosselin, C. M., and Kong, X., 2004, “Cartesian Parallel Manipulators,” U.S. Patent No. 6,729,202
  4. ^ Xianwen Kong, Clément M. Gosselin, Kinematics and Singularity Analysis of a Novel Type of 3-CRR 3-DOF Translational Parallel Manipulator, The International Journal of Robotics Research Vol. 21, No. 9, September 2002, pp. 791-7
  5. ^ Kong, Xianwen; Gosselin, Clément M. (2002), "Type Synthesis of Linear Translational Parallel Manipulators", Advances in Robot Kinematics, Dordrecht: Springer Netherlands, pp. 453–462, ISBN 978-90-481-6054-9, retrieved 2020-12-14
  6. ^ Kim, Han Sung; Tsai, Lung-Wen (2002), "Evaluation of a Cartesian Parallel Manipulator", Advances in Robot Kinematics, Dordrecht: Springer Netherlands, pp. 21–28, ISBN 978-90-481-6054-9, retrieved 2020-12-14
  7. ^ Wenger, P.; Chablat, D. (2000), "Kinematic Analysis of a New Parallel Machine Tool: The Orthoglide", Advances in Robot Kinematics, Dordrecht: Springer Netherlands, pp. 305–314, ISBN 978-94-010-5803-2, retrieved 2020-12-14
  8. ^ Chablat, D.; Wenger, P. (2003). "Architecture optimization of a 3-DOF translational parallel mechanism for machining applications, the orthoglide". IEEE Transactions on Robotics and Automation. 19 (3): 403–410. doi:10.1109/tra.2003.810242. ISSN 1042-296X.
  9. ^ Liu, Xin-Jun; Jeong, Jay il; Kim, Jongwon (2003-10-24). "A three translational DoFs parallel cube-manipulator". Robotica. 21 (6): 645–653. doi:10.1017/s0263574703005198. ISSN 0263-5747.
  10. ^ Briot, S.; Bonev, I. A. (2009-01-06). "Pantopteron: A New Fully Decoupled 3DOF Translational Parallel Robot for Pick-and-Place Applications". Journal of Mechanisms and Robotics. 1 (2). doi:10.1115/1.3046125. ISSN 1942-4302.
  11. ^ Gosselin, C (2009-01-06). "Compact dynamic models for the tripteron and quadrupteron parallel manipulators". Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering. 223 (1): 1–12. doi:10.1243/09596518jsce605. ISSN 0959-6518.
  12. ^ Gosselin, Clement M.; Masouleh, Mehdi Tale; Duchaine, Vincent; Richard, Pierre-Luc; Foucault, Simon; Kong, Xianwen (2007). "Parallel Mechanisms of the Multipteron Family: Kinematic Architectures and Benchmarking". Proceedings 2007 IEEE International Conference on Robotics and Automation. IEEE. doi:10.1109/robot.2007.363045. ISBN 1-4244-0602-1.
  13. ^ Seward, Nicholas; Bonev, Ilian A. (2014). "A new 6-DOF parallel robot with simple kinematic model". 2014 IEEE International Conference on Robotics and Automation (ICRA). IEEE. doi:10.1109/icra.2014.6907449. ISBN 978-1-4799-3685-4.
  14. ^ Gogu, Grigore (2004). "Structural synthesis of fully-isotropic translational parallel robots via theory of linear transformations". European Journal of Mechanics - A/Solids. 23 (6): 1021–1039. doi:10.1016/j.euromechsol.2004.08.006. ISSN 0997-7538.
  15. ^ Gogu, Grigore (2007). "Structural synthesis of fully-isotropic parallel robots with Schönflies motions via theory of linear transformations and evolutionary morphology". European Journal of Mechanics - A/Solids. 26 (2): 242–269. doi:10.1016/j.euromechsol.2006.06.001. ISSN 0997-7538.
  16. ^ "Structural synthesis", Solid Mechanics and its Applications, Dordrecht: Springer Netherlands, pp. 299–328, 2008, ISBN 978-1-4020-5102-9, retrieved 2020-12-14
  17. ^ Gogu, G. (2009). "Structural synthesis of maximally regular T3R2-type parallel robots via theory of linear transformations and evolutionary morphology". Robotica. 27 (1): 79–101. doi:10.1017/s0263574708004542. ISSN 0263-5747.
  18. ^ Wiktor, Peter (2020). "Coupled Cartesian Manipulators". Mechanism and Machine Theory: 103903. doi:10.1016/j.mechmachtheory.2020.103903. ISSN 0094-114X.