Buchholz's psi-functions are a hierarchy of single-argument ordinal functions
ψ
ν
(
α
)
{\displaystyle \psi _{\nu }(\alpha )}
introduced by German mathematician Wilfried Buchholz in 1986.[ 1] These functions are a simplified version of the
θ
{\displaystyle \theta }
-functions, but nevertheless have the same strength as those. Later on this approach was extended by Jaiger[ 2] and Schütte .[ 3]
Definition
Buchholz defined his functions as follows:
C
ν
0
(
α
)
=
Ω
ν
,
C
ν
n
+
1
(
α
)
=
C
ν
n
(
α
)
∪
{
γ
∣
P
(
γ
)
⊆
C
ν
n
(
α
)
}
∪
{
ψ
μ
(
ξ
)
∣
ξ
∈
α
∩
C
ν
n
(
α
)
∧
ξ
∈
C
μ
(
ξ
)
∧
μ
≤
ω
}
,
C
ν
(
α
)
=
⋃
n
<
ω
C
ν
n
(
α
)
,
ψ
ν
(
α
)
=
min
{
γ
∣
γ
∉
C
ν
(
α
)
}
,
{\displaystyle {\begin{aligned}C_{\nu }^{0}(\alpha )={}&\Omega _{\nu },\\[6pt]C_{\nu }^{n+1}(\alpha )={}&C_{\nu }^{n}(\alpha )\cup \{\gamma \mid P(\gamma )\subseteq C_{\nu }^{n}(\alpha )\}\\&{}\cup \{\psi _{\mu }(\xi )\mid \xi \in \alpha \cap C_{\nu }^{n}(\alpha )\wedge \xi \in C_{\mu }(\xi )\wedge \mu \leq \omega \},\\[6pt]C_{\nu }(\alpha )={}&\bigcup _{n<\omega }C_{\nu }^{n}(\alpha ),\\\psi _{\nu }(\alpha )={}&\min\{\gamma \mid \gamma \not \in C_{\nu }(\alpha )\},\end{aligned}}}
where
Ω
ν
=
{
1
if
ν
=
0
ℵ
ν
if
ν
>
0
{\displaystyle \Omega _{\nu }={\begin{cases}1{\text{ if }}\nu =0\\\aleph _{\nu }{\text{ if }}\nu >0\end{cases}}}
and
P
(
γ
)
=
{
γ
1
,
…
,
γ
k
}
{\displaystyle P(\gamma )=\{\gamma _{1},\ldots ,\gamma _{k}\}}
is the set of additive principal numbers in form
ω
ξ
{\displaystyle \omega ^{\xi }}
,
P
=
{
α
∈
On
:
0
<
α
∧
∀
ξ
,
η
<
α
(
ξ
+
η
<
α
)
}
=
{
ω
ξ
:
ξ
∈
On
}
,
{\displaystyle P=\{\alpha \in \operatorname {On} :0<\alpha \wedge \forall \xi ,\eta <\alpha (\xi +\eta <\alpha )\}=\{\omega ^{\xi }:\xi \in \operatorname {On} \},}
the sum of which gives this ordinal
γ
{\displaystyle \gamma }
:
γ
=
α
1
+
α
2
+
⋯
+
α
k
{\displaystyle \gamma =\alpha _{1}+\alpha _{2}+\cdots +\alpha _{k}}
where
α
1
≥
α
2
≥
⋯
≥
α
k
{\displaystyle \alpha _{1}\geq \alpha _{2}\geq \cdots \geq \alpha _{k}}
and
α
1
,
α
2
,
…
,
α
k
∈
P
(
γ
)
.
{\displaystyle \alpha _{1},\alpha _{2},\ldots ,\alpha _{k}\in P(\gamma ).}
Note: Greek letters always denotes ordinals.
The limit of this notation is Takeuti–Feferman–Buchholz ordinal .
Properties
Buchholz showed following properties of this functions:
ψ
ν
(
0
)
=
Ω
ν
,
{\displaystyle \psi _{\nu }(0)=\Omega _{\nu },}
ψ
ν
(
α
)
∈
P
,
{\displaystyle \psi _{\nu }(\alpha )\in P,}
ψ
ν
(
α
+
1
)
=
min
{
γ
∈
P
:
ψ
ν
(
α
)
<
γ
}
if
α
∈
C
ν
(
α
)
,
{\displaystyle \psi _{\nu }(\alpha +1)=\min\{\gamma \in P:\psi _{\nu }(\alpha )<\gamma \}{\text{ if }}\alpha \in C_{\nu }(\alpha ),}
Ω
ν
≤
ψ
ν
(
α
)
<
Ω
ν
+
1
{\displaystyle \Omega _{\nu }\leq \psi _{\nu }(\alpha )<\Omega _{\nu +1}}
ψ
0
(
α
)
=
ω
α
if
α
<
ε
0
,
{\displaystyle \psi _{0}(\alpha )=\omega ^{\alpha }{\text{ if }}\alpha <\varepsilon _{0},}
ψ
ν
(
α
)
=
ω
Ω
ν
+
α
if
α
<
ε
Ω
ν
+
1
and
ν
≠
0
,
{\displaystyle \psi _{\nu }(\alpha )=\omega ^{\Omega _{\nu }+\alpha }{\text{ if }}\alpha <\varepsilon _{\Omega _{\nu }+1}{\text{ and }}\nu \neq 0,}
θ
(
ε
Ω
ν
+
1
,
0
)
=
ψ
(
ε
Ω
ν
+
1
)
for
0
<
ν
≤
ω
.
{\displaystyle \theta (\varepsilon _{\Omega _{\nu }+1},0)=\psi (\varepsilon _{\Omega _{\nu }+1}){\text{ for }}0<\nu \leq \omega .}
The normal form for 0 is 0. If
α
{\displaystyle \alpha }
is a nonzero ordinal number
α
<
Ω
ω
{\displaystyle \alpha <\Omega _{\omega }}
then the normal form for
α
{\displaystyle \alpha }
is
α
=
ψ
ν
1
(
β
1
)
+
ψ
ν
2
(
β
2
)
+
⋯
+
ψ
ν
k
(
β
k
)
{\displaystyle \alpha =\psi _{\nu _{1}}(\beta _{1})+\psi _{\nu _{2}}(\beta _{2})+\cdots +\psi _{\nu _{k}}(\beta _{k})}
where
ν
i
∈
N
0
,
k
∈
N
>
0
,
β
i
∈
C
ν
i
(
β
i
)
{\displaystyle \nu _{i}\in \mathbb {N} _{0},k\in \mathbb {N} _{>0},\beta _{i}\in C_{\nu _{i}}(\beta _{i})}
and
ψ
ν
1
(
β
1
)
≥
ψ
ν
2
(
β
2
)
≥
⋯
≥
ψ
ν
k
(
β
k
)
{\displaystyle \psi _{\nu _{1}}(\beta _{1})\geq \psi _{\nu _{2}}(\beta _{2})\geq \cdots \geq \psi _{\nu _{k}}(\beta _{k})}
and each
β
i
{\displaystyle \beta _{i}}
is also written in normal form.
Fundamental sequences
The fundamental sequence for an ordinal number
α
{\displaystyle \alpha }
with cofinality
cof
(
α
)
=
β
{\displaystyle \operatorname {cof} (\alpha )=\beta }
is a strictly increasing sequence
(
α
[
η
]
)
η
<
β
{\displaystyle (\alpha [\eta ])_{\eta <\beta }}
with length
β
{\displaystyle \beta }
and with limit
α
{\displaystyle \alpha }
, where
α
[
η
]
{\displaystyle \alpha [\eta ]}
is the
η
{\displaystyle \eta }
-th element of this sequence. If
α
{\displaystyle \alpha }
is a successor ordinal then
cof
(
α
)
=
1
{\displaystyle \operatorname {cof} (\alpha )=1}
and the fundamental sequence has only one element
α
[
0
]
=
α
−
1
{\displaystyle \alpha [0]=\alpha -1}
. If
α
{\displaystyle \alpha }
is a limit ordinal then
cof
(
α
)
∈
{
ω
}
∪
{
Ω
μ
+
1
∣
μ
≥
0
}
{\displaystyle \operatorname {cof} (\alpha )\in \{\omega \}\cup \{\Omega _{\mu +1}\mid \mu \geq 0\}}
.
For nonzero ordinals
α
<
Ω
ω
{\displaystyle \alpha <\Omega _{\omega }}
, written in normal form, fundamental sequences are defined as follows:
If
α
=
ψ
ν
1
(
β
1
)
+
ψ
ν
2
(
β
2
)
+
⋯
+
ψ
ν
k
(
β
k
)
{\displaystyle \alpha =\psi _{\nu _{1}}(\beta _{1})+\psi _{\nu _{2}}(\beta _{2})+\cdots +\psi _{\nu _{k}}(\beta _{k})}
where
k
≥
2
{\displaystyle k\geq 2}
then
cof
(
α
)
=
cof
(
ψ
ν
k
(
β
k
)
)
{\displaystyle \operatorname {cof} (\alpha )=\operatorname {cof} (\psi _{\nu _{k}}(\beta _{k}))}
and
α
[
η
]
=
ψ
ν
1
(
β
1
)
+
⋯
+
ψ
ν
k
−
1
(
β
k
−
1
)
+
(
ψ
ν
k
(
β
k
)
[
η
]
)
{\displaystyle \alpha [\eta ]=\psi _{\nu _{1}}(\beta _{1})+\cdots +\psi _{\nu _{k-1}}(\beta _{k-1})+(\psi _{\nu _{k}}(\beta _{k})[\eta ])}
,
If
α
=
ψ
0
(
0
)
=
1
{\displaystyle \alpha =\psi _{0}(0)=1}
, then
cof
(
α
)
=
1
{\displaystyle \operatorname {cof} (\alpha )=1}
and
α
[
0
]
=
0
{\displaystyle \alpha [0]=0}
,
If
α
=
ψ
ν
+
1
(
0
)
{\displaystyle \alpha =\psi _{\nu +1}(0)}
, then
cof
(
α
)
=
Ω
ν
+
1
{\displaystyle \operatorname {cof} (\alpha )=\Omega _{\nu +1}}
and
α
[
η
]
=
Ω
ν
+
1
[
η
]
=
η
{\displaystyle \alpha [\eta ]=\Omega _{\nu +1}[\eta ]=\eta }
,
If
α
=
ψ
ν
(
β
+
1
)
{\displaystyle \alpha =\psi _{\nu }(\beta +1)}
then
cof
(
α
)
=
ω
{\displaystyle \operatorname {cof} (\alpha )=\omega }
and
α
[
η
]
=
ψ
ν
(
β
)
⋅
η
{\displaystyle \alpha [\eta ]=\psi _{\nu }(\beta )\cdot \eta }
(and note:
ψ
ν
(
0
)
=
Ω
ν
{\displaystyle \psi _{\nu }(0)=\Omega _{\nu }}
),
If
α
=
ψ
ν
(
β
)
{\displaystyle \alpha =\psi _{\nu }(\beta )}
and
cof
(
β
)
∈
{
ω
}
∪
{
Ω
μ
+
1
∣
μ
<
ν
}
{\displaystyle \operatorname {cof} (\beta )\in \{\omega \}\cup \{\Omega _{\mu +1}\mid \mu <\nu \}}
then
cof
(
α
)
=
cof
(
β
)
{\displaystyle \operatorname {cof} (\alpha )=\operatorname {cof} (\beta )}
and
α
[
η
]
=
ψ
ν
(
β
[
η
]
)
{\displaystyle \alpha [\eta ]=\psi _{\nu }(\beta [\eta ])}
,
If
α
=
ψ
ν
(
β
)
{\displaystyle \alpha =\psi _{\nu }(\beta )}
and
cof
(
β
)
∈
{
Ω
μ
+
1
∣
μ
≥
ν
}
{\displaystyle \operatorname {cof} (\beta )\in \{\Omega _{\mu +1}\mid \mu \geq \nu \}}
then
cof
(
α
)
=
ω
{\displaystyle \operatorname {cof} (\alpha )=\omega }
and
α
[
η
]
=
ψ
ν
(
β
[
γ
[
η
]
]
)
{\displaystyle \alpha [\eta ]=\psi _{\nu }(\beta [\gamma [\eta ]])}
where
{
γ
[
0
]
=
Ω
μ
γ
[
η
+
1
]
=
ψ
μ
(
β
[
γ
[
η
]
]
)
{\displaystyle \left\{{\begin{array}{lcr}\gamma [0]=\Omega _{\mu }\\\gamma [\eta +1]=\psi _{\mu }(\beta [\gamma [\eta ]])\\\end{array}}\right.}
.
Explanation
Buchholz is working in Zermelo–Fraenkel set theory, that means every ordinal
α
{\displaystyle \alpha }
is equal to set
{
β
∣
β
<
α
}
{\displaystyle \{\beta \mid \beta <\alpha \}}
. Then condition
C
ν
0
(
α
)
=
Ω
ν
{\displaystyle C_{\nu }^{0}(\alpha )=\Omega _{\nu }}
means that set
C
ν
0
(
α
)
{\displaystyle C_{\nu }^{0}(\alpha )}
includes all ordinals less than
Ω
ν
{\displaystyle \Omega _{\nu }}
in other words
C
ν
0
(
α
)
=
{
β
∣
β
<
Ω
ν
}
{\displaystyle C_{\nu }^{0}(\alpha )=\{\beta \mid \beta <\Omega _{\nu }\}}
.
The condition
C
ν
n
+
1
(
α
)
=
C
ν
n
(
α
)
∪
{
γ
∣
P
(
γ
)
⊆
C
ν
n
(
α
)
}
∪
{
ψ
μ
(
ξ
)
∣
ξ
∈
α
∩
C
ν
n
(
α
)
∧
μ
≤
ω
}
{\displaystyle C_{\nu }^{n+1}(\alpha )=C_{\nu }^{n}(\alpha )\cup \{\gamma \mid P(\gamma )\subseteq C_{\nu }^{n}(\alpha )\}\cup \{\psi _{\mu }(\xi )\mid \xi \in \alpha \cap C_{\nu }^{n}(\alpha )\wedge \mu \leq \omega \}}
means that set
C
ν
n
+
1
(
α
)
{\displaystyle C_{\nu }^{n+1}(\alpha )}
includes:
all ordinals from previous set
C
ν
n
(
α
)
{\displaystyle C_{\nu }^{n}(\alpha )}
,
all ordinals that can be obtained by summation the additively principal ordinals from previous set
C
ν
n
(
α
)
{\displaystyle C_{\nu }^{n}(\alpha )}
,
all ordinals that can be obtained by applying ordinals less than
α
{\displaystyle \alpha }
from the previous set
C
ν
n
(
α
)
{\displaystyle C_{\nu }^{n}(\alpha )}
as arguments of functions
ψ
μ
{\displaystyle \psi _{\mu }}
, where
μ
≤
ω
{\displaystyle \mu \leq \omega }
.
That is why we can rewrite this condition as:
C
ν
n
+
1
(
α
)
=
{
β
+
γ
,
ψ
μ
(
η
)
∣
β
,
γ
,
η
∈
C
ν
n
(
α
)
∧
η
<
α
∧
μ
≤
ω
}
.
{\displaystyle C_{\nu }^{n+1}(\alpha )=\{\beta +\gamma ,\psi _{\mu }(\eta )\mid \beta ,\gamma ,\eta \in C_{\nu }^{n}(\alpha )\wedge \eta <\alpha \wedge \mu \leq \omega \}.}
Thus union of all sets
C
ν
n
(
α
)
{\displaystyle C_{\nu }^{n}(\alpha )}
with
n
<
ω
{\displaystyle n<\omega }
i.e.
C
ν
(
α
)
=
⋃
n
<
ω
C
ν
n
(
α
)
{\displaystyle C_{\nu }(\alpha )=\bigcup _{n<\omega }C_{\nu }^{n}(\alpha )}
denotes the set of all ordinals which can be generated from ordinals
<
ℵ
ν
{\displaystyle <\aleph _{\nu }}
by the functions + (addition) and
ψ
μ
(
η
)
{\displaystyle \psi _{\mu }(\eta )}
, where
μ
≤
ω
{\displaystyle \mu \leq \omega }
and
η
<
α
{\displaystyle \eta <\alpha }
.
Then
ψ
ν
(
α
)
=
min
{
γ
∣
γ
∉
C
ν
(
α
)
}
{\displaystyle \psi _{\nu }(\alpha )=\min\{\gamma \mid \gamma \not \in C_{\nu }(\alpha )\}}
is the smallest ordinal that does not belong to this set.
Examples
Consider the following examples:
C
0
0
(
α
)
=
{
0
}
=
{
β
∣
β
<
1
}
,
{\displaystyle C_{0}^{0}(\alpha )=\{0\}=\{\beta \mid \beta <1\},}
C
0
(
0
)
=
{
0
}
{\displaystyle C_{0}(0)=\{0\}}
(since no functions
ψ
(
η
<
0
)
{\displaystyle \psi (\eta <0)}
and 0 + 0 = 0).
Then
ψ
0
(
0
)
=
1
{\displaystyle \psi _{0}(0)=1}
.
C
0
(
1
)
{\displaystyle C_{0}(1)}
includes
ψ
0
(
0
)
=
1
{\displaystyle \psi _{0}(0)=1}
and all possible sums of natural numbers and therefore
ψ
0
(
1
)
=
ω
{\displaystyle \psi _{0}(1)=\omega }
– first transfinite ordinal, which is greater than all natural numbers by its definition.
C
0
(
2
)
{\displaystyle C_{0}(2)}
includes
ψ
0
(
0
)
=
1
,
ψ
0
(
1
)
=
ω
{\displaystyle \psi _{0}(0)=1,\psi _{0}(1)=\omega }
and all possible sums of them and therefore
ψ
0
(
2
)
=
ω
2
{\displaystyle \psi _{0}(2)=\omega ^{2}}
.
If
α
=
ω
{\displaystyle \alpha =\omega }
then
C
0
(
α
)
=
{
0
,
ψ
(
0
)
=
1
,
…
,
ψ
(
1
)
=
ω
,
…
,
ψ
(
2
)
=
ω
2
,
…
,
ψ
(
3
)
=
ω
3
,
…
}
{\displaystyle C_{0}(\alpha )=\{0,\psi (0)=1,\ldots ,\psi (1)=\omega ,\ldots ,\psi (2)=\omega ^{2},\ldots ,\psi (3)=\omega ^{3},\ldots \}}
and
ψ
0
(
ω
)
=
ω
ω
{\displaystyle \psi _{0}(\omega )=\omega ^{\omega }}
.
If
α
=
Ω
{\displaystyle \alpha =\Omega }
then
C
0
(
α
)
=
{
0
,
ψ
(
0
)
=
1
,
…
,
ψ
(
1
)
=
ω
,
…
,
ψ
(
ω
)
=
ω
ω
,
…
,
ψ
(
ω
ω
)
=
ω
ω
ω
,
…
}
{\displaystyle C_{0}(\alpha )=\{0,\psi (0)=1,\ldots ,\psi (1)=\omega ,\ldots ,\psi (\omega )=\omega ^{\omega },\ldots ,\psi (\omega ^{\omega })=\omega ^{\omega ^{\omega }},\ldots \}}
and
ψ
0
(
Ω
)
=
ε
0
{\displaystyle \psi _{0}(\Omega )=\varepsilon _{0}}
– the smallest epsilon number i.e. first fixed point of
α
=
ω
α
{\displaystyle \alpha =\omega ^{\alpha }}
.
If
α
=
Ω
+
1
{\displaystyle \alpha =\Omega +1}
then
C
0
(
α
)
=
{
0
,
1
,
…
,
ψ
0
(
Ω
)
=
ε
0
,
…
,
ε
0
+
ε
0
,
…
,
ψ
1
(
0
)
=
Ω
,
…
}
{\displaystyle C_{0}(\alpha )=\{0,1,\ldots ,\psi _{0}(\Omega )=\varepsilon _{0},\ldots ,\varepsilon _{0}+\varepsilon _{0},\ldots ,\psi _{1}(0)=\Omega ,\ldots \}}
and
ψ
0
(
Ω
+
1
)
=
ε
0
ω
=
ω
ε
0
+
1
{\displaystyle \psi _{0}(\Omega +1)=\varepsilon _{0}\omega =\omega ^{\varepsilon _{0}+1}}
.
ψ
0
(
Ω
2
)
=
ε
1
{\displaystyle \psi _{0}(\Omega 2)=\varepsilon _{1}}
the second epsilon number,
ψ
0
(
Ω
2
)
=
ε
ε
⋯
=
ζ
0
{\displaystyle \psi _{0}(\Omega ^{2})=\varepsilon _{\varepsilon _{\cdots }}=\zeta _{0}}
i.e. first fixed point of
α
=
ε
α
{\displaystyle \alpha =\varepsilon _{\alpha }}
,
φ
(
α
,
1
+
β
)
=
ψ
0
(
Ω
α
β
)
{\displaystyle \varphi (\alpha ,1+\beta )=\psi _{0}(\Omega ^{\alpha }\beta )}
, where
φ
{\displaystyle \varphi }
denotes the Veblen's function,
ψ
0
(
Ω
Ω
)
=
Γ
0
=
φ
(
1
,
0
,
0
)
=
θ
(
Ω
,
0
)
{\displaystyle \psi _{0}(\Omega ^{\Omega })=\Gamma _{0}=\varphi (1,0,0)=\theta (\Omega ,0)}
, where
θ
{\displaystyle \theta }
denotes the Feferman's function,
ψ
0
(
Ω
Ω
2
)
=
φ
(
1
,
0
,
0
,
0
)
{\displaystyle \psi _{0}(\Omega ^{\Omega ^{2}})=\varphi (1,0,0,0)}
is the Ackermann ordinal,
ψ
0
(
Ω
Ω
ω
)
{\displaystyle \psi _{0}(\Omega ^{\Omega ^{\omega }})}
is the small Veblen ordinal,
ψ
0
(
Ω
Ω
Ω
)
{\displaystyle \psi _{0}(\Omega ^{\Omega ^{\Omega }})}
is the large Veblen ordinal,
ψ
0
(
Ω
↑↑
ω
)
=
ψ
0
(
ε
Ω
+
1
)
=
θ
(
ε
Ω
+
1
,
0
)
.
{\displaystyle \psi _{0}(\Omega \uparrow \uparrow \omega )=\psi _{0}(\varepsilon _{\Omega +1})=\theta (\varepsilon _{\Omega +1},0).}
Now let's research how
ψ
1
{\displaystyle \psi _{1}}
works:
C
1
0
(
0
)
=
{
β
∣
β
<
Ω
1
}
=
{
0
,
ψ
(
0
)
=
1
,
2
,
…
googol
,
…
,
ψ
0
(
1
)
=
ω
,
…
,
ψ
0
(
Ω
)
=
ε
0
,
…
{\displaystyle C_{1}^{0}(0)=\{\beta \mid \beta <\Omega _{1}\}=\{0,\psi (0)=1,2,\ldots {\text{googol}},\ldots ,\psi _{0}(1)=\omega ,\ldots ,\psi _{0}(\Omega )=\varepsilon _{0},\ldots }
…
,
ψ
0
(
Ω
Ω
)
=
Γ
0
,
…
,
ψ
(
Ω
Ω
Ω
+
Ω
2
)
,
…
}
{\displaystyle \ldots ,\psi _{0}(\Omega ^{\Omega })=\Gamma _{0},\ldots ,\psi (\Omega ^{\Omega ^{\Omega }+\Omega ^{2}}),\ldots \}}
i.e. includes all countable ordinals. And therefore
C
1
(
0
)
{\displaystyle C_{1}(0)}
includes all possible sums of all countable ordinals and
ψ
1
(
0
)
=
Ω
1
{\displaystyle \psi _{1}(0)=\Omega _{1}}
first uncountable ordinal which is greater than all countable ordinal by its definition i.e. smallest number with cardinality
ℵ
1
{\displaystyle \aleph _{1}}
.
If
α
=
1
{\displaystyle \alpha =1}
then
C
1
(
α
)
=
{
0
,
…
,
ψ
0
(
0
)
=
ω
,
…
,
ψ
1
(
0
)
=
Ω
,
…
,
Ω
+
ω
,
…
,
Ω
+
Ω
,
…
}
{\displaystyle C_{1}(\alpha )=\{0,\ldots ,\psi _{0}(0)=\omega ,\ldots ,\psi _{1}(0)=\Omega ,\ldots ,\Omega +\omega ,\ldots ,\Omega +\Omega ,\ldots \}}
and
ψ
1
(
1
)
=
Ω
ω
=
ω
Ω
+
1
{\displaystyle \psi _{1}(1)=\Omega \omega =\omega ^{\Omega +1}}
.
ψ
1
(
2
)
=
Ω
ω
2
=
ω
Ω
+
2
,
{\displaystyle \psi _{1}(2)=\Omega \omega ^{2}=\omega ^{\Omega +2},}
ψ
1
(
ψ
1
(
0
)
)
=
ψ
1
(
Ω
)
=
Ω
2
=
ω
Ω
+
Ω
,
{\displaystyle \psi _{1}(\psi _{1}(0))=\psi _{1}(\Omega )=\Omega ^{2}=\omega ^{\Omega +\Omega },}
ψ
1
(
ψ
1
(
ψ
1
(
0
)
)
)
=
ω
Ω
+
ω
Ω
+
Ω
=
ω
Ω
⋅
Ω
=
(
ω
Ω
)
Ω
=
Ω
Ω
,
{\displaystyle \psi _{1}(\psi _{1}(\psi _{1}(0)))=\omega ^{\Omega +\omega ^{\Omega +\Omega }}=\omega ^{\Omega \cdot \Omega }=(\omega ^{\Omega })^{\Omega }=\Omega ^{\Omega },}
ψ
1
4
(
0
)
=
Ω
Ω
Ω
,
{\displaystyle \psi _{1}^{4}(0)=\Omega ^{\Omega ^{\Omega }},}
ψ
1
k
+
1
(
0
)
=
Ω
↑↑
k
{\displaystyle \psi _{1}^{k+1}(0)=\Omega \uparrow \uparrow k}
where
k
{\displaystyle k}
is a natural number,
k
≥
2
{\displaystyle k\geq 2}
,
ψ
1
(
Ω
2
)
=
ψ
1
ω
(
0
)
=
Ω
↑↑
ω
=
ε
Ω
+
1
.
{\displaystyle \psi _{1}(\Omega _{2})=\psi _{1}^{\omega }(0)=\Omega \uparrow \uparrow \omega =\varepsilon _{\Omega +1}.}
For case
ψ
(
ψ
2
(
0
)
)
=
ψ
(
Ω
2
)
{\displaystyle \psi (\psi _{2}(0))=\psi (\Omega _{2})}
the set
C
0
(
Ω
2
)
{\displaystyle C_{0}(\Omega _{2})}
includes functions
ψ
0
{\displaystyle \psi _{0}}
with all arguments less than
Ω
2
{\displaystyle \Omega _{2}}
i.e. such arguments as
0
,
ψ
1
(
0
)
,
ψ
1
(
ψ
1
(
0
)
)
,
ψ
1
3
(
0
)
,
…
,
ψ
1
ω
(
0
)
{\displaystyle 0,\psi _{1}(0),\psi _{1}(\psi _{1}(0)),\psi _{1}^{3}(0),\ldots ,\psi _{1}^{\omega }(0)}
and then
ψ
0
(
Ω
2
)
=
ψ
0
(
ψ
1
(
Ω
2
)
)
=
ψ
0
(
ε
Ω
+
1
)
.
{\displaystyle \psi _{0}(\Omega _{2})=\psi _{0}(\psi _{1}(\Omega _{2}))=\psi _{0}(\varepsilon _{\Omega +1}).}
In the general case:
ψ
0
(
Ω
ν
+
1
)
=
ψ
0
(
ψ
ν
(
Ω
ν
+
1
)
)
=
ψ
0
(
ε
Ω
ν
+
1
)
=
θ
(
ε
Ω
ν
+
1
,
0
)
.
{\displaystyle \psi _{0}(\Omega _{\nu +1})=\psi _{0}(\psi _{\nu }(\Omega _{\nu +1}))=\psi _{0}(\varepsilon _{\Omega _{\nu }+1})=\theta (\varepsilon _{\Omega _{\nu }+1},0).}
We also can write:
θ
(
Ω
ν
,
0
)
=
ψ
0
(
Ω
ν
Ω
)
(for
1
≤
ν
)
<
ω
{\displaystyle \theta (\Omega _{\nu },0)=\psi _{0}(\Omega _{\nu }^{\Omega }){\text{ (for }}1\leq \nu )<\omega }
References
^ Buchholz, W. "A New System of Proof-Theoretic Ordinal Functions" (PDF) . Annals of Pure and Applied Logic . 32 . [permanent dead link ]
^ Jaiger, G (1984). "P-inaccessible ordinals, collapsing functions, and a recursive notation system". Archiv f. math. Logik und Grundlagenf . pp. 49– 62.
^ Buchholz, W.; Schütte, K. (1983). "Ein Ordinalzahlensystem ftir die beweistheoretische Abgrenzung der H~-Separation und Bar-Induktion". Sitzungsberichte der Bayerischen Akademie der Wissenschaften, Math.-Naturw. Klasse .