Jump to content

Talk:Interval exchange transformation

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by 67.198.37.16 (talk) at 21:00, 21 October 2020 (Maths rating |class=Start |priority=Low |field=probability). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
WikiProject iconMathematics Start‑class Low‑priority
WikiProject iconThis article is within the scope of WikiProject Mathematics, a collaborative effort to improve the coverage of mathematics on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.
StartThis article has been rated as Start-class on Wikipedia's content assessment scale.
LowThis article has been rated as Low-priority on the project's priority scale.
WikiProject iconSystems: Chaos theory Start‑class Mid‑importance
WikiProject iconThis article is within the scope of WikiProject Systems, which collaborates on articles related to systems and systems science.
StartThis article has been rated as Start-class on Wikipedia's content assessment scale.
MidThis article has been rated as Mid-importance on the project's importance scale.
Taskforce icon
This article is within the field of Chaos theory.

Sources:

Cornfeld Fomin and Sinai's book gives a general construction of IET with n ergodic measures (I think there construction requires 2n+1 intervals.) Michael Keane's Non-ergodic interval exchange transformations, gives a non-uniquelly ergodic minimal 4 IET. (Keynes and Newton gave a non-uniquelly ergodic 5 IET based on an older example of W. Veech) Veech's proof that a.e. IET w/ irreducible permutation is uniquelly ergodic is in The Metric Theory of interval exchange transformations Masur's is in Interval exchange transformations and measured foliation.

Veech proof (1982) also works also for measured foliations as ergodicity is invariant under time change. Odiralgnirt

The bound for ergodic measure of an n interval IET is in Cornfeld Fomin and Sinai. For minimal IET's [n/2] is a bound as shown by Veech in Interval exchange transformations. Anatole Katok I think also have showed this.

The actual bound for interval exchanges is g where g is the genus of the associated measured foliation or translation surfaces. The original proof is by Katok ("Invariant measures of flows on orientable surfaces", Akad. Nauk SSSR 211, 1973) Odiralgnirt