User:ColeDU/Quantum complexity theory
Background[edit]
See also: Computational complexity and Complexity class
A complexity class is a collection of computational problems that can be solved by a computational model under certain resource constraints. For instance, the complexity class P is defined as the set of problems solvable by a Turing machine in polynomial time. Similarly, quantum complexity classes may be defined using quantum models of computation, such as the quantum circuit model or the equivalent quantum Turing machine. One of the main aims of quantum complexity theory is to find out how these classes relate to classical complexity classes such as P, NP, BPP, and PSPACE.
One of the reasons quantum complexity theory is studied are the implications of quantum computing for the modern Church-Turing thesis. In short the modern Church-Turing thesis states that any computational model can be simulated in polynomial time with a probabilistic Turing machine.[1] However, questions around the Church-Turing thesis arise in the context of quantum computing. It is unclear whether the Church-Turing thesis holds for the quantum computation model. There is much evidence that the thesis does not hold and that it may not be possible for a probabilistic Turing machine to simulate quantum computation models in polynomial time.[1]
References
- ^ a b Vazirani, Umesh V. (2002). "A survey of quantum complexity theory". Proceedings of Symposia in Applied Mathematics: 193–217. doi:10.1090/psapm/058/1922899. ISSN 2324-7088.