Jump to content

Alternating-time temporal logic

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Citation bot (talk | contribs) at 11:00, 28 September 2020 (Add: url, s2cid, author pars. 1-1. Removed parameters. Some additions/deletions were actually parameter name changes. | You can use this bot yourself. Report bugs here. | Suggested by SemperIocundus | via #UCB_webform). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In computer science, alternating-time temporal logic, or ATL, is a branching-time temporal logic that extends Computation tree logic (CTL) to multiple players.[1] ATL naturally describes computations of multi-agent systems and multiplayer video games.[2] Quantification in ATL is over program-paths that are possible outcomes of games.[3] ATL uses alternating-time formulas to construct model-checkers in order to address problems such as receptiveness, realizability, and controllability.

Examples

In ATL, we can write logical formulas as that expresses the fact that agents a and b have a strategy to ensure that the property p holds in the future, whatever the other agents of the system are performing.

Extensions and variants

ATL* is the extension of ATL, as CTL* extends CTL. ATL* allows to write more complex temporal objectives, for instance . Belardinelli et al. proposes a variant of ATL on finite traces.[4] ATL has been extended with context, in order to store the current strategies played by the agents. ATL* is extended by strategy logic.

ATL has been generalized to include epistemic features. In 2003, van der Hoek and Woodridge proposed ATEL is the logic ATL augmented with an epistemic operator from epistemic logic.[5] In 2004, Pierre-Yves Schobbens proposed variants of ATL with imperfect recall.[6]

In ATL we cannot express properties about individual objectives. That is why, in 2010, Chatterjee, Henzinger and Piterman introduced strategy logic, a first-order logic in which strategies are first-order citizens.[7] Strategy logic subsumes both ATL and ATL*.

See also

References

  1. ^ Alur, Rajeev; Henzinger, Thomas A.; Kupferman, Orna (1997). "Alternating-time temporal logic". Proceedings of the 38th Annual Symposium on Foundations of Computer Science. IEEE Computer Society. pp. 100–109. doi:10.1109/SFCS.1997.646098. ISBN 0-8186-8197-7. {{cite conference}}: Unknown parameter |booktitle= ignored (|book-title= suggested) (help)
  2. ^ van Drimmelen, Govert (2003). "Satisfiability in Alternating-time Temporal Logic". Proceedings of the 18th Annual IEEE Symposium on Logic in Computer Science. IEEE Computer Society. doi:10.1109/LICS.2003.1210060. ISBN 0-7695-1884-2. {{cite conference}}: Unknown parameter |booktitle= ignored (|book-title= suggested) (help)
  3. ^ Alur, Rajeev; Henzinger, Thomas A.; Kupferman, Orna (2002). "Alternating-Time Temporal Logic". Journal of the ACM. 49 (5): 672–713. doi:10.1145/585265.585270. S2CID 15984608.
  4. ^ Belardinelli, Francesco; Lomuscio, Alessio; Murano, Aniello; Rubin, Sasha (2018). "Alternating-time Temporal Logic on Finite Traces": 77–83. {{cite journal}}: Cite journal requires |journal= (help)
  5. ^ van der Hoek, Wiebe; Wooldridge, Michael (2003-10-01). "Cooperation, Knowledge, and Time: Alternating-time Temporal Epistemic Logic and its Applications". Studia Logica. 75 (1): 125–157. doi:10.1023/A:1026185103185. ISSN 1572-8730. S2CID 10913405.
  6. ^ Schobbens, Pierre-Yves (2004-04-01). "Alternating-time logic with imperfect recall". Electronic Notes in Theoretical Computer Science. LCMAS 2003, Logic and Communication in Multi-Agent Systems. 85 (2): 82–93. doi:10.1016/S1571-0661(05)82604-0. ISSN 1571-0661.
  7. ^ Chatterjee, Krishnendu; Henzinger, Thomas A.; Piterman, Nir (2010-06-01). "Strategy logic" (PDF). Information and Computation. Special Issue: 18th International Conference on Concurrency Theory (CONCUR 2007). 208 (6): 677–693. doi:10.1016/j.ic.2009.07.004. ISSN 0890-5401.