Jump to content

Incomplete Bessel K function/generalized incomplete gamma function

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Citation bot (talk | contribs) at 18:17, 28 August 2020 (Alter: url, title, template type. Add: s2cid. Removed parameters. | You can use this bot yourself. Report bugs here. | Suggested by AManWithNoPlan | All pages linked from cached copy of User:AManWithNoPlan/sandbox2 | via #UCB_webform_linked). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Some mathematicians defined this type incomplete-version of Bessel function or this type generalized-version of incomplete gamma function:[1][2][3][4][5]

Properties

One of the advantage of defining this type incomplete-version of Bessel function is that even for example the associated Anger–Weber function defined in Digital Library of Mathematical Functions[6] can related:

recurrence relations

satisfy this recurrence relation:

References

  1. ^ "incompleteBesselK function | R Documentation". www.rdocumentation.org.
  2. ^ "incompleteBesselK: The Incomplete Bessel K Function in DistributionUtils: Distribution Utilities". rdrr.io.
  3. ^ Harris, Frank E. (2008). "Incomplete Bessel, generalized incomplete gamma, or leaky aquifer functions" (PDF). Journal of Computational and Applied Mathematics. 215: 260–269. doi:10.1016/j.cam.2007.04.008. Retrieved 2020-01-08.
  4. ^ "Generalized incomplete gamma function and its application". 2018-01-14. Retrieved 2020-01-08.
  5. ^ "Archived copy" (PDF) (Document). S2CID 126117454. Archived from the original (PDF) on 2019-12-23. Retrieved 2019-12-23. {{cite document}}: Cite document requires |publisher= (help); Unknown parameter |access-date= ignored (help); Unknown parameter |archive-date= ignored (help); Unknown parameter |archive-url= ignored (help); Unknown parameter |s2cid= ignored (help); Unknown parameter |url-status= ignored (help); Unknown parameter |url= ignored (help)CS1 maint: archived copy as title (link)
  6. ^ Paris, R. B. (2010), "Anger-Weber Functions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.