From Wikipedia, the free encyclopedia
In mathematics, the multivariate gamma function Γp is a generalization of the gamma function. It is useful in multivariate statistics, appearing in the probability density function of the Wishart and inverse Wishart distributions, and the matrix variate beta distribution.[1]
It has two equivalent definitions. One is given as the following integral over the
positive-definite real matrices:

(note that
reduces to the ordinary gamma function). The other one, more useful to obtain a numerical result is:
![{\displaystyle \Gamma _{p}(a)=\pi ^{p(p-1)/4}\prod _{j=1}^{p}\Gamma \left[a+(1-j)/2\right].}](/media/api/rest_v1/media/math/render/svg/4dc9bcc58164ece0de7aef7b0ba2b1a0925a1a04)
From this, we have the recursive relationships:
![{\displaystyle \Gamma _{p}(a)=\pi ^{(p-1)/2}\Gamma (a)\Gamma _{p-1}(a-{\tfrac {1}{2}})=\pi ^{(p-1)/2}\Gamma _{p-1}(a)\Gamma [a+(1-p)/2].}](/media/api/rest_v1/media/math/render/svg/842b762835010dccfea7a4e848cefcecb30f3e8e)
Thus



and so on.
This can also be extended to non-integer values of p with the expression:
Where G is the Barnes G-function, the indefinite product of the Gamma function.
Derivatives
We may define the multivariate digamma function as

and the general polygamma function as

Calculation steps

- it follows that


- it follows that
![{\displaystyle {\begin{aligned}{\frac {\partial \Gamma _{p}(a)}{\partial a}}&=\pi ^{p(p-1)/4}\prod _{j=1}^{p}\Gamma (a+(1-j)/2)\sum _{i=1}^{p}\psi (a+(1-i)/2)\\[4pt]&=\Gamma _{p}(a)\sum _{i=1}^{p}\psi (a+(1-i)/2).\end{aligned}}}](/media/api/rest_v1/media/math/render/svg/53be1f08a21a67f4a4d96fa959255f792b5071d1)
References