Jump to content

Continuous spontaneous localization model

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by DannyS712 bot (talk | contribs) at 18:00, 10 June 2020 (Task 3: Disable the categories on this page while it is still a draft, per WP:DRAFTNOCAT/WP:USERNOCAT). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

The Continuous Spontaneous Localization (CSL) model is a spontaneous collapse model in quantum mechanics, proposed in 1989 by Philip Pearle[1] and finalized in 1990 Gian Carlo Ghirardi, Philip Pearle and Alberto Rimini[2].

Introduction

The most widely studied among the dynamical reduction (also known as collapse) models is the Continuous Spontaneous Localization (CSL) model[1][2][3]. The model works as a paradigm of collapse models, accounting for all the desired features and overcoming the difficulties faced by the Ghirardi-Rimini-Weber (GRW) model[4]. The CSL model describes the collapse as occurring continuously in time, in contrast to GRW.

The main features of the model are[3]:

  • The localization takes place in position, which is the preferred basis.
  • The model does not alter the dynamics of the microscopic system, while it acts firmly on macroscopic objects: the amplification mechanism ensures this scaling.
  • It preserves the symmetry properties of identical particles, in distinction with the GRW model.
  • It is characterized by two parameters: and , which are respectively the collapse rate and the correlation length of the model.

Dynamical equation

The CSL dynamical equation for the wavefunction is stochastic and non-linear in the wavefunction; it readswhere is the Hamiltonian describing the quantum mechanical dynamics, is a reference mass taken equal to that of a nucleon, , and the noise field has zero average and correlation equal towhere denotes the stochastic average over the noise. Finally, we introducedwhere is the mass density operator, which readswhere and are, respectively, the second quantized creation and annihilation operators of a particle of type with spin at the point of mass . The use of these operators satisfies the conservation of the symmetrical properties of identical particles. Moreover, the mass proportionality implements autometically the amplification mechanism. The choice of the form of ensures the collapse in the position basis.


The action of the CSL model is quantified by the values of the two phenomenological parameters and . Originally, GRW[4] proposed s at m, while later Adler considered larger values[5]: s for m, and s for m. Eventually these values are bounded by experiments.

From the dynamics of the wavefunction one can obtain the corresponding master equation for the statistical operator :Once the master equation is represented in the position basis, it becomes clear that its direct action is that of diagonalizing the state in position. In the case of a single point-like particle of mass , it readswhere the off-diagonal terms, which have , decay exponentially. Conversely, the diagonal terms, characterized by , are preserved. For a composite system, the single-particle collapse rate should be substitute with that of the composite systemwhere is the Fourier transform of the mass density of the system.

Experimental tests

Contrary to other solutions of the measurement problem, collapse models are experimentally verifiable. We divide the experiments testing the CSL model in two classes: interferometric and non-interferometric experiments, which respectively probe direct and indirect effects of the collapse mechanism.

Interferometric experiments

Interferometric experiments can detect the direct action of collapse models, which is the collapse of the wavefunction. They include all the experiments where a superposition is generated and, after some time, its interference pattern is probed. The action of CSL is a reduction of the interference contrast, which is quantified by the reduction of the off-diagonal terms of the statistical operator[6]where denotes the statistical operator described by quantum mechanics, and we defineAmong the experiments testing such a reduction of the interference contrast, we count those with cold-atoms[7], with molecules[6][8][9][10] and with entangled diamonds[11][12].


Similarly, one can also quantify the minimum collapse strength to actually solve the measurement problem at the macroscopic level. Specifically, an estimate[6] can be obtained by requiring that a superposition of a single-layered graphene disk of radius m collapses in less than s.

Non-interferometric experiments

Non-interferometric experiments consist in all the collapse models testings which are not based on the preparation of a superposition. They exploit an indirect effect of collapse models, which consists in a Brownian motion induced by the interaction with the collapse noise. The effect of this noise is an effective stochastic force acting on the system, and several experiments can be design to quantify such a force. Among them we can count:

  • Radiation emission from charged particles:

If the particle is electrically charged, the action of the coupling with the collapse noise will induce a radiation emission. This result is in net contrast with the predictions of quantum mechanics, where no radiation is expected. The predicted CSL-induced emission rate at frequency for a particle of charge is given by[13][14][15][16]:where is the vacuum dielectric constant and is the light speed. The CSL predictions are tested[17][18][19][20] analyzing the X-ray emission spectrum from a bulk Germanium test mass.

  • Heating in bulk materials

One of the predictions of CSL is the increase of the total energy of a system. For example, the total energy of a free particle of mass in three dimensions grows linearly in time according to[3] where is the initial energy of the system. This increase is actually small; for example, an hydrogen atom is heated by K per year considering the values s and m. Although small, such a potential energy increase can be tested considering the heating effect in cold atoms[21][22] and bulk materials, as Bravais lattices[23], low temperature experiments[24], neutron stars[25][26] and planets[25].

  • Diffusive effects

Another prediction of the CSL model is the increase of the center-of-mass position spread of a system. For a free particle, the position spread in one dimension reads[27]where is the free quantum mechanical spread and is the CSL diffusion constant, defined as[28][29][30]where we considered the motion along the axis and denoted with the Fourier transform of the mass density . In an experiment, such an increase is limited by the dissipation rate . Assuming that the experiment is performed at temperature , a particle, which has mass and it is harmonically trapped at frequency , at the equilibrium reaches a position spread given by[31][32]where is the Boltzmann constant. Several experiments can test such a spread. They range from cold atom free expansion[21][22], nano-cantilevers cooled to millikelvin temperatures[31][33][34], gravitational wave detectors[35][36], levitated optomechanics[32][37][38][39], torsion pendulum[40].

Dissipative and colored extensions

The CSL model describes coherently the collapse mechanism. It has, however, two week points.

  • CSL does not conserve energy at long time-scales

Although this increase is small, it is an unexpected feature also for a phenomenological model[3]. The dissipative extension of the CSL model[41] gives a remedy. One associates to the collapse noise a finite temperature at which the system will eventually termalize. Thus, for a free point-like particle of mass in three dimensions, the energy evolution is described bywhere , and . Assuming that the CSL noise has a cosmological origin (which is reasonable due to its supposed universality), a plausible value such a temperature is K, although only experiments can indicate a definite value. Several interferometric[6][9] and non-interferometric[22][38][42] tests bounded the CSL parameter space for different choices of .

  • The CSL noise spectrum is white

If one assumes a physical origin to the CSL noise, then its spectrum cannot be white but colored. In particular, in place of the white noise , whose correlation is proportional to a Dirac delta in time, we now have a non-white noise characterized by a non-trivial temporal correlation function of the noise. The effect can be quantified by a rescaling of , which becomeswhere . As an example, one can consider an exponentially decaying noise, whose time correlation function can be of the form[43] . In such a way, one introduces a frequency cutoff , whose inverse describes the time scale of the noise correlations. The parameter works now as the third parameter of the colored CSL model together with and . Assuming a cosmological origin of the noise, a reasonable guess is[44] Hz. As for the dissipative extension, experimental bounds were obtained for different values of : they comprehend interferometric[6][9] and non-interferometric[22][43] tests.

References

  1. ^ a b Pearle, Philip (1989-03-01). "Combining stochastic dynamical state-vector reduction with spontaneous localization". Physical Review A. 39 (5): 2277–2289. doi:10.1103/PhysRevA.39.2277.
  2. ^ a b Ghirardi, Gian Carlo; Pearle, Philip; Rimini, Alberto (1990-07-01). "Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles". Physical Review A. 42 (1): 78–89. doi:10.1103/PhysRevA.42.78.
  3. ^ a b c d Bassi, Angelo; Ghirardi, GianCarlo (2003-06-01). "Dynamical reduction models". Physics Reports. 379 (5): 257–426. doi:10.1016/S0370-1573(03)00103-0. ISSN 0370-1573.
  4. ^ a b Ghirardi, G. C.; Rimini, A.; Weber, T. (1986-07-15). "Unified dynamics for microscopic and macroscopic systems". Physical Review D. 34 (2): 470–491. doi:10.1103/PhysRevD.34.470.
  5. ^ Adler, Stephen L (2007-10-16). "Lower and upper bounds on CSL parameters from latent image formation and IGM~heating". Journal of Physics A: Mathematical and Theoretical. 40 (44): 13501–13501. doi:10.1088/1751-8121/40/44/c01. ISSN 1751-8113.
  6. ^ a b c d e Toroš, Marko; Gasbarri, Giulio; Bassi, Angelo (2017-12-20). "Colored and dissipative continuous spontaneous localization model and bounds from matter-wave interferometry". Physics Letters A. 381 (47): 3921–3927. doi:10.1016/j.physleta.2017.10.002. ISSN 0375-9601.
  7. ^ Kovachy, T.; Asenbaum, P.; Overstreet, C.; Donnelly, C. A.; Dickerson, S. M.; Sugarbaker, A.; Hogan, J. M.; Kasevich, M. A. (2015). "Quantum superposition at the half-metre scale". Nature. 528 (7583): 530–533. doi:10.1038/nature16155. ISSN 1476-4687.
  8. ^ Eibenberger, Sandra; Gerlich, Stefan; Arndt, Markus; Mayor, Marcel; Tüxen, Jens (2013-08-14). "Matter–wave interference of particles selected from a molecular library with masses exceeding 10 000 amu". Physical Chemistry Chemical Physics. 15 (35): 14696–14700. doi:10.1039/C3CP51500A. ISSN 1463-9084.
  9. ^ a b c Toroš, Marko; Bassi, Angelo (2018-02-15). "Bounds on quantum collapse models from matter-wave interferometry: calculational details". Journal of Physics A: Mathematical and Theoretical. 51 (11): 115302. doi:10.1088/1751-8121/aaabc6. ISSN 1751-8113.
  10. ^ Fein, Yaakov Y.; Geyer, Philipp; Zwick, Patrick; Kiałka, Filip; Pedalino, Sebastian; Mayor, Marcel; Gerlich, Stefan; Arndt, Markus (2019). "Quantum superposition of molecules beyond 25 kDa". Nature Physics. 15 (12): 1242–1245. doi:10.1038/s41567-019-0663-9. ISSN 1745-2481.
  11. ^ Lee, K. C.; Sprague, M. R.; Sussman, B. J.; Nunn, J.; Langford, N. K.; Jin, X.-M.; Champion, T.; Michelberger, P.; Reim, K. F.; England, D.; Jaksch, D. (2011-12-02). "Entangling Macroscopic Diamonds at Room Temperature". Science. 334 (6060): 1253–1256. doi:10.1126/science.1211914. ISSN 0036-8075. PMID 22144620.
  12. ^ Belli, Sebastiano; Bonsignori, Riccarda; D'Auria, Giuseppe; Fant, Lorenzo; Martini, Mirco; Peirone, Simone; Donadi, Sandro; Bassi, Angelo (2016-07-12). "Entangling macroscopic diamonds at room temperature: Bounds on the continuous-spontaneous-localization parameters". Physical Review A. 94 (1): 012108. doi:10.1103/PhysRevA.94.012108.
  13. ^ Adler, Stephen L; Ramazanoğlu, Fethi M (2007-10-16). "Photon-emission rate from atomic systems in the CSL model". Journal of Physics A: Mathematical and Theoretical. 40 (44): 13395–13406. doi:10.1088/1751-8113/40/44/017. ISSN 1751-8113.
  14. ^ Bassi, Angelo; Ferialdi, Luca (2009-07-31). "Non-Markovian dynamics for a free quantum particle subject to spontaneous collapse in space: General solution and main properties". Physical Review A. 80 (1): 012116. doi:10.1103/PhysRevA.80.012116.
  15. ^ Adler, Stephen L; Bassi, Angelo; Donadi, Sandro (2013-06-03). "On spontaneous photon emission in collapse models". Journal of Physics A: Mathematical and Theoretical. 46 (24): 245304. doi:10.1088/1751-8113/46/24/245304. ISSN 1751-8113.
  16. ^ Bassi, A.; Donadi, S. (2014-02-14). "Spontaneous photon emission from a non-relativistic free charged particle in collapse models: A case study". Physics Letters A. 378 (10): 761–765. doi:10.1016/j.physleta.2014.01.002. ISSN 0375-9601.
  17. ^ Fu, Qijia (1997-09-01). "Spontaneous radiation of free electrons in a nonrelativistic collapse model". Physical Review A. 56 (3): 1806–1811. doi:10.1103/PhysRevA.56.1806.
  18. ^ Morales, A.; Aalseth, C. E.; Avignone, F. T.; Brodzinski, R. L.; Cebrián, S.; Garcı́a, E.; Irastorza, I. G.; Kirpichnikov, I. V.; Klimenko, A. A.; Miley, H. S.; Morales, J. (2002-04-18). "Improved constraints on wimps from the international germanium experiment IGEX". Physics Letters B. 532 (1): 8–14. doi:10.1016/S0370-2693(02)01545-9. ISSN 0370-2693.
  19. ^ Curceanu, C.; Bartalucci, S.; Bassi, A.; Bazzi, M.; Bertolucci, S.; Berucci, C.; Bragadireanu, A. M.; Cargnelli, M.; Clozza, A.; De Paolis, L.; Di Matteo, S. (2016-03-01). "Spontaneously Emitted X-rays: An Experimental Signature of the Dynamical Reduction Models". Foundations of Physics. 46 (3): 263–268. doi:10.1007/s10701-015-9923-4. ISSN 1572-9516.
  20. ^ Piscicchia, Kristian; Bassi, Angelo; Curceanu, Catalina; Grande, Raffaele Del; Donadi, Sandro; Hiesmayr, Beatrix C.; Pichler, Andreas (2017). "CSL Collapse Model Mapped with the Spontaneous Radiation". Entropy. 19 (7): 319. doi:10.3390/e19070319.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  21. ^ a b Kovachy, Tim; Hogan, Jason M.; Sugarbaker, Alex; Dickerson, Susannah M.; Donnelly, Christine A.; Overstreet, Chris; Kasevich, Mark A. (2015-04-08). "Matter Wave Lensing to Picokelvin Temperatures". Physical Review Letters. 114 (14): 143004. doi:10.1103/PhysRevLett.114.143004.
  22. ^ a b c d Bilardello, Marco; Donadi, Sandro; Vinante, Andrea; Bassi, Angelo (2016-11-15). "Bounds on collapse models from cold-atom experiments". Physica A: Statistical Mechanics and its Applications. 462: 764–782. doi:10.1016/j.physa.2016.06.134. ISSN 0378-4371.
  23. ^ Bahrami, M. (2018-05-18). "Testing collapse models by a thermometer". Physical Review A. 97 (5): 052118. doi:10.1103/PhysRevA.97.052118.
  24. ^ Adler, Stephen L.; Vinante, Andrea (2018-05-18). "Bulk heating effects as tests for collapse models". Physical Review A. 97 (5): 052119. doi:10.1103/PhysRevA.97.052119.
  25. ^ a b Adler, Stephen L.; Bassi, Angelo; Carlesso, Matteo; Vinante, Andrea (2019-05-10). "Testing continuous spontaneous localization with Fermi liquids". Physical Review D. 99 (10): 103001. doi:10.1103/PhysRevD.99.103001.
  26. ^ Tilloy, Antoine; Stace, Thomas M. (2019-08-21). "Neutron Star Heating Constraints on Wave-Function Collapse Models". Physical Review Letters. 123 (8): 080402. doi:10.1103/PhysRevLett.123.080402.
  27. ^ Romero-Isart, Oriol (2011-11-28). "Quantum superposition of massive objects and collapse models". Physical Review A. 84 (5): 052121. doi:10.1103/PhysRevA.84.052121.
  28. ^ Bahrami, M.; Paternostro, M.; Bassi, A.; Ulbricht, H. (2014-05-29). "Proposal for a Noninterferometric Test of Collapse Models in Optomechanical Systems". Physical Review Letters. 112 (21): 210404. doi:10.1103/PhysRevLett.112.210404.
  29. ^ Nimmrichter, Stefan; Hornberger, Klaus; Hammerer, Klemens (2014-07-10). "Optomechanical Sensing of Spontaneous Wave-Function Collapse". Physical Review Letters. 113 (2): 020405. doi:10.1103/PhysRevLett.113.020405.
  30. ^ Diósi, Lajos (2015-02-04). "Testing Spontaneous Wave-Function Collapse Models on Classical Mechanical Oscillators". Physical Review Letters. 114 (5): 050403. doi:10.1103/PhysRevLett.114.050403.
  31. ^ a b Vinante, A.; Bahrami, M.; Bassi, A.; Usenko, O.; Wijts, G.; Oosterkamp, T. H. (2016-03-02). "Upper Bounds on Spontaneous Wave-Function Collapse Models Using Millikelvin-Cooled Nanocantilevers". Physical Review Letters. 116 (9): 090402. doi:10.1103/PhysRevLett.116.090402.
  32. ^ a b Carlesso, Matteo; Paternostro, Mauro; Ulbricht, Hendrik; Vinante, Andrea; Bassi, Angelo (2018-08-17). "Non-interferometric test of the continuous spontaneous localization model based on rotational optomechanics". New Journal of Physics. 20 (8): 083022. doi:10.1088/1367-2630/aad863. ISSN 1367-2630.
  33. ^ Vinante, A.; Mezzena, R.; Falferi, P.; Carlesso, M.; Bassi, A. (2017-09-12). "Improved Noninterferometric Test of Collapse Models Using Ultracold Cantilevers". Physical Review Letters. 119 (11): 110401. doi:10.1103/PhysRevLett.119.110401.
  34. ^ Carlesso, Matteo; Vinante, Andrea; Bassi, Angelo (2018-08-17). "Multilayer test masses to enhance the collapse noise". Physical Review A. 98 (2): 022122. doi:10.1103/PhysRevA.98.022122.
  35. ^ Carlesso, Matteo; Bassi, Angelo; Falferi, Paolo; Vinante, Andrea (2016-12-23). "Experimental bounds on collapse models from gravitational wave detectors". Physical Review D. 94 (12): 124036. doi:10.1103/PhysRevD.94.124036.
  36. ^ Helou, Bassam; Slagmolen, B. J. J.; McClelland, David E.; Chen, Yanbei (2017-04-28). "LISA pathfinder appreciably constrains collapse models". Physical Review D. 95 (8): 084054. doi:10.1103/PhysRevD.95.084054.
  37. ^ Zheng, Di; Leng, Yingchun; Kong, Xi; Li, Rui; Wang, Zizhe; Luo, Xiaohui; Zhao, Jie; Duan, Chang-Kui; Huang, Pu; Du, Jiangfeng; Carlesso, Matteo (2020-01-17). "Room temperature test of the continuous spontaneous localization model using a levitated micro-oscillator". Physical Review Research. 2 (1): 013057. doi:10.1103/PhysRevResearch.2.013057.
  38. ^ a b Pontin, A.; Bullier, N. P.; Toroš, M.; Barker, P. F. (2019-07-13). "An ultra-narrow line width levitated nano-oscillator for testing dissipative wavefunction collapse". arXiv:1907.06046 [quant-ph].
  39. ^ Vinante, A.; Pontin, A.; Rashid, M.; Toroš, M.; Barker, P. F.; Ulbricht, H. (2019-07-16). "Testing collapse models with levitated nanoparticles: Detection challenge". Physical Review A. 100 (1): 012119. doi:10.1103/PhysRevA.100.012119.
  40. ^ Komori, Kentaro; Enomoto, Yutaro; Ooi, Ching Pin; Miyazaki, Yuki; Matsumoto, Nobuyuki; Sudhir, Vivishek; Michimura, Yuta; Ando, Masaki (2020-01-17). "Attonewton-meter torque sensing with a macroscopic optomechanical torsion pendulum". Physical Review A. 101 (1): 011802. doi:10.1103/PhysRevA.101.011802.
  41. ^ Smirne, Andrea; Bassi, Angelo (2015-08-05). "Dissipative Continuous Spontaneous Localization (CSL) model". Scientific Reports. 5 (1): 1–9. doi:10.1038/srep12518. ISSN 2045-2322.
  42. ^ Nobakht, J.; Carlesso, M.; Donadi, S.; Paternostro, M.; Bassi, A. (2018-10-08). "Unitary unraveling for the dissipative continuous spontaneous localization model: Application to optomechanical experiments". Physical Review A. 98 (4): 042109. doi:10.1103/PhysRevA.98.042109.
  43. ^ a b Carlesso, Matteo; Ferialdi, Luca; Bassi, Angelo (2018-09-18). "Colored collapse models from the non-interferometric perspective". The European Physical Journal D. 72 (9): 159. doi:10.1140/epjd/e2018-90248-x. ISSN 1434-6079.
  44. ^ Bassi, A.; Deckert, D.-A.; Ferialdi, L. (2010-12-01). "Breaking quantum linearity: Constraints from human perception and cosmological implications". EPL (Europhysics Letters). 92 (5): 50006. doi:10.1209/0295-5075/92/50006. ISSN 0295-5075.

Category:Interpretations of quantum mechanics Category:Quantum measurement