Jump to content

Backpropagation through structure

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Citation bot (talk | contribs) at 22:26, 4 June 2020 (Alter: title, template type. Add: isbn, doi, pages, volume, chapter, s2cid. Removed URL that duplicated unique identifier. Removed parameters. Formatted dashes. Some additions/deletions were actually parameter name changes. | You can use this bot yourself. Report bugs here. | Activated by AManWithNoPlan | All pages linked from User:AManWithNoPlan/sandbox2 | via #UCB_webform_linked). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Backpropagation Through Structure (BPTS) is a gradient-based technique for training recursive neural nets (a superset of recurrent neural nets) and is extensively described in a 1996 paper written by Christoph Goller and Andreas Küchler.[1]

References

  1. ^ Kuchler, Andreas (1996). "Learning Task-Dependent Distributed Representations by Backpropagation Through Structure". Proceedings of International Conference on Neural Networks (ICNN'96). Vol. 1. pp. 347–352. CiteSeerX 10.1.1.49.1968. doi:10.1109/ICNN.1996.548916. ISBN 0-7803-3210-5. S2CID 6536466.