In computability theory , computational complexity theory and proof theory , a fast-growing hierarchy (also called an extended Grzegorczyk hierarchy ) is an ordinal-indexed family of rapidly increasing functions f α : N → N (where N is the set of natural numbers {0, 1, ...}, and α ranges up to some large countable ordinal ). A primary example is the Wainer hierarchy , or Löb–Wainer hierarchy , which is an extension to all α < ε0 . Such hierarchies provide a natural way to classify computable functions according to rate-of-growth and computational complexity .
Definition
Let μ be a large countable ordinal such to every limit ordinal α < μ there is assigned a fundamental sequence (a strictly increasing sequence of ordinals whose supremum is α). A fast-growing hierarchy of functions f α : N → N , for α < μ, is then defined as follows:
f
0
(
n
)
=
n
+
1
,
{\displaystyle f_{0}(n)=n+1,}
f
α
+
1
(
n
)
=
f
α
n
(
n
)
,
{\displaystyle f_{\alpha +1}(n)=f_{\alpha }^{n}(n),}
f
α
(
n
)
=
f
α
[
n
]
(
n
)
{\displaystyle f_{\alpha }(n)=f_{\alpha [n]}(n)}
if α is a limit ordinal.
Here f α n (n ) = f α (f α (...(f α (n ))...)) denotes the n th iterate of f α applied to n , and α[n ] denotes the n th element of the fundamental sequence assigned to the limit ordinal α. (An alternative definition takes the number of iterations to be n +1, rather than n , in the second line above.)
The initial part of this hierarchy, comprising the functions f α with finite index (i.e., α < ω), is often called the Grzegorczyk hierarchy because of its close relationship to the Grzegorczyk hierarchy ; note, however, that the former is here an indexed family of functions f n , whereas the latter is an indexed family of sets of functions
E
n
{\displaystyle {\mathcal {E}}^{n}}
. (See Points of Interest below.)
Generalizing the above definition even further, a fast iteration hierarchy is obtained by taking f 0 to be any increasing function g: N → N .
For limit ordinals not greater than ε0 , there is a straightforward natural definition of the fundamental sequences (see the Wainer hierarchy below), but beyond ε0 the definition is much more complicated. However, this is possible well beyond the Feferman–Schütte ordinal, Γ0 , up to at least the Bachmann–Howard ordinal . Using Buchholz psi functions one can extend this definition easily to the ordinal of transfinitely iterated
Π
1
1
{\displaystyle \Pi _{1}^{1}}
-comprehension (see Analytical hierarchy ).
A fully specified extension beyond the recursive ordinals is thought to be unlikely; e.g., Prӧmel et al. [1991](p. 348) note that in such an attempt "there would even arise problems in ordinal notation".
The Wainer hierarchy
The Wainer hierarchy is the particular fast-growing hierarchy of functions f α (α ≤ ε0 ) obtained by defining the fundamental sequences as follows [Gallier 1991][Prӧmel, et al., 1991]:
For limit ordinals λ < ε0 , written in Cantor normal form ,
if λ = ωα1 + ... + ωαk−1 + ωαk for α1 ≥ ... ≥ αk−1 ≥ αk , then λ[n ] = ωα1 + ... + ωαk−1 + ωαk [n ],
if λ = ωα+1 , then λ[n ] = ωα n ,
if λ = ωα for a limit ordinal α, then λ[n ] = ωα[n ] ,
and
if λ = ε0 , take λ[0] = 0 and λ[n + 1] = ωλ[n ] as in [Gallier 1991]; alternatively, take the same sequence except starting with λ[0] = 1 as in [Prӧmel, et al., 1991]. For n > 0, the alternative version has one additional ω in the resulting exponential tower, i.e. λ[n ] = ωω...ω with n omegas.
Some authors use slightly different definitions (e.g., ωα+1 [n ] = ωα (n+1 ), instead of ωα n ), and some define this hierarchy only for α < ε0 (thus excluding f ε0 from the hierarchy).
To continue beyond ε0 , see the Fundamental sequences for the Veblen hierarchy .
Points of interest
Following are some relevant points of interest about fast-growing hierarchies:
Every f α is a total function . If the fundamental sequences are computable (e.g., as in the Wainer hierarchy), then every f α is a total computable function .
In the Wainer hierarchy, f α is dominated by f β if α < β. (For any two functions f , g : N → N , f is said to dominate g if f (n ) > g (n ) for all sufficiently large n .) The same property holds in any fast-growing hierarchy with fundamental sequences satisfying the so-called Bachmann property . (This property holds for most natural well orderings.)[clarification needed ]
In the Grzegorczyk hierarchy, every primitive recursive function is dominated by some f α with α < ω. Hence, in the Wainer hierarchy, every primitive recursive function is dominated by f ω , which is a variant of the Ackermann function .
For n ≥ 3, the set
E
n
{\displaystyle {\mathcal {E}}^{n}}
in the Grzegorczyk hierarchy is composed of just those total multi-argument functions which, for sufficiently large arguments, are computable within time bounded by some fixed iterate f n -1k evaluated at the maximum argument.
In the Wainer hierarchy, every f α with α < ε0 is computable and provably total in Peano arithmetic .
Every computable function that's provably total in Peano arithmetic is dominated by some f α with α < ε0 in the Wainer hierarchy. Hence f ε0 in the Wainer hierarchy is not provably total in Peano arithmetic.
The Goodstein function has approximately the same growth rate (i.e. each is dominated by some fixed iterate of the other) as f ε0 in the Wainer hierarchy, dominating every f α for which α < ε0 , and hence is not provably total in Peano Arithmetic.
In the Wainer hierarchy, if α < β < ε0 , then f β dominates every computable function within time and space bounded by some fixed iterate f α k .
Friedman's TREE function dominates f Γ0 in a fast-growing hierarchy described by Gallier (1991).
The Wainer hierarchy of functions f α and the Hardy hierarchy of functions h α are related by f α = h ωα for all α < ε0 . The Hardy hierarchy "catches up" to the Wainer hierarchy at α = ε0 , such that f ε0 and h ε0 have the same growth rate, in the sense that f ε0 (n -1) ≤ h ε0 (n ) ≤ f ε0 (n +1) for all n ≥ 1. (Gallier 1991)
Girard (1981) and Cichon & Wainer (1983) showed that the slow-growing hierarchy of functions g α attains the same growth rate as the function f ε0 in the Wainer hierarchy when α is the Bachmann–Howard ordinal . Girard (1981) further showed that the slow-growing hierarchy g α attains the same growth rate as f α (in a particular fast-growing hierarchy) when α is the ordinal of the theory ID <ω of arbitrary finite iterations of an inductive definition. (Wainer 1989)
Functions in fast-growing hierarchies
The functions at finite levels (α < ω) of any fast-growing hierarchy coincide with those of the Grzegorczyk hierarchy: (using hyperoperation )
f 0 (n ) = n + 1 = 2 [1] n − 1
f 1 (n ) = f 0 n (n ) = n + n = 2n = 2 [2] n
f 2 (n ) = f 1 n (n ) = 2n · n > 2n = 2 [3] n for n ≥ 2
f k +1 (n ) = f k n (n ) > (2 [k + 1])n n ≥ 2 [k + 2] n for n ≥ 2, k < ω.
Beyond the finite levels are the functions of the Wainer hierarchy (ω ≤ α ≤ ε0 ):
f ω (n ) = f n (n ) > 2 [n + 1] n > 2 [n ] (n + 3) − 3 = A (n , n ) for n ≥ 4, where A is the Ackermann function (of which f ω is a unary version).
f ω+1 (n ) = f ω n (n ) ≥ fn [n + 2] n (n ) for all n > 0, where n [n + 2] n is the n th Ackermann number .
f ω+1 (64) > f ω 64 (64) > Graham's number (= g 64 in the sequence defined by g 0 = 4, g k +1 = 3 [g k + 2] 3). This follows by noting f ω (n ) > 2 [n + 1] n > 3 [n ] 3 + 2, and hence f ω (g k + 2) > g k +1 + 2.
f ε0 (n ) is the first function in the Wainer hierarchy that dominates the Goodstein function .
Approximate growth rates in comparison to other googological notations
f
0
(
n
)
=
n
+
1
{\displaystyle f_{0}(n)=n+1}
f
1
(
n
)
=
2
n
{\displaystyle f_{1}(n)=2n}
f
2
(
n
)
=
2
n
n
{\displaystyle f_{2}(n)=2^{n}n}
f
3
(
n
)
>
2
↑↑
n
{\displaystyle f_{3}(n)>2\uparrow \uparrow n}
(see Knuth's up-arrow notation )
f
4
(
n
)
>
2
↑↑↑
n
{\displaystyle f_{4}(n)>2\uparrow \uparrow \uparrow n}
f
m
(
n
)
>
2
↑
m
−
1
n
{\displaystyle f_{m}(n)>2\uparrow ^{m-1}n}
f
ω
(
n
)
>
2
↑
n
−
1
n
=
{
n
,
n
,
n
−
1
}
{\displaystyle f_{\omega }(n)>2\uparrow ^{n-1}n=\{n,n,n-1\}}
(see Bowers's operators )
f
ω
+
1
(
n
)
=
{
n
,
n
,
1
,
2
}
≈
G
(
n
)
{\displaystyle f_{\omega +1}(n)=\{n,n,1,2\}\approx G(n)}
(see Graham's number )
f
ω
+
2
(
n
)
=
{
n
,
n
,
2
,
2
}
{\displaystyle f_{\omega +2}(n)=\{n,n,2,2\}}
f
ω
+
m
(
n
)
=
{
n
,
n
,
m
,
2
}
{\displaystyle f_{\omega +m}(n)=\{n,n,m,2\}}
f
ω
2
(
n
)
=
{
n
,
n
,
n
,
2
}
{\displaystyle f_{\omega 2}(n)=\{n,n,n,2\}}
f
ω
2
+
1
(
n
)
=
{
n
,
n
,
1
,
3
}
{\displaystyle f_{\omega 2+1}(n)=\{n,n,1,3\}}
f
ω
3
(
n
)
=
{
n
,
n
,
n
,
3
}
{\displaystyle f_{\omega 3}(n)=\{n,n,n,3\}}
f
ω
m
(
n
)
=
{
n
,
n
,
n
,
m
}
{\displaystyle f_{\omega {m}}(n)=\{n,n,n,m\}}
f
ω
m
+
k
(
n
)
=
{
n
,
n
,
k
,
m
+
1
}
{\displaystyle f_{\omega {m+k}}(n)=\{n,n,k,m+1\}}
f
ω
2
(
n
)
=
{
n
,
n
,
n
,
n
}
{\displaystyle f_{\omega ^{2}}(n)=\{n,n,n,n\}}
f
ω
3
(
n
)
=
{
n
,
n
,
n
,
n
,
n
}
{\displaystyle f_{\omega ^{3}}(n)=\{n,n,n,n,n\}}
f
ω
m
(
n
)
=
{
n
,
n
,
n
,
.
.
.
,
n
}
{\displaystyle f_{\omega ^{m}}(n)=\{n,n,n,...,n\}}
(m entries)
f
ω
ω
(
n
)
=
{
n
,
n
,
n
,
.
.
.
,
n
}
{\displaystyle f_{\omega ^{\omega }}(n)=\{n,n,n,...,n\}}
(n entries)
=
{
n
,
n
(
1
)
2
}
{\displaystyle =\{n,n(1)2\}}
f
ω
ω
+
1
(
n
)
=
{
n
,
n
(
1
)
1
,
2
}
{\displaystyle f_{\omega ^{\omega +1}}(n)=\{n,n(1)1,2\}}
f
ω
ω
+
2
(
n
)
=
{
n
,
n
(
1
)
1
,
1
,
2
}
{\displaystyle f_{\omega ^{\omega +2}}(n)=\{n,n(1)1,1,2\}}
f
ω
ω
2
(
n
)
=
{
n
,
n
(
1
)
1
(
1
)
2
}
{\displaystyle f_{\omega ^{\omega 2}}(n)=\{n,n(1)1(1)2\}}
f
ω
ω
2
+
1
(
n
)
=
{
n
,
n
(
1
)
1
(
1
)
1
,
2
}
{\displaystyle f_{\omega ^{\omega 2+1}}(n)=\{n,n(1)1(1)1,2\}}
f
ω
ω
3
(
n
)
=
{
n
,
n
(
1
)
1
(
1
)
1
(
1
)
2
}
{\displaystyle f_{\omega ^{\omega 3}}(n)=\{n,n(1)1(1)1(1)2\}}
f
ω
ω
2
(
n
)
=
{
n
,
n
(
2
)
2
}
{\displaystyle f_{\omega ^{\omega ^{2}}}(n)=\{n,n(2)2\}}
f
ω
ω
3
(
n
)
=
{
n
,
n
(
3
)
2
}
{\displaystyle f_{\omega ^{\omega ^{3}}}(n)=\{n,n(3)2\}}
f
ω
ω
m
(
n
)
=
{
n
,
n
(
m
)
2
}
{\displaystyle f_{\omega ^{\omega ^{m}}}(n)=\{n,n(m)2\}}
f
ω
ω
ω
(
n
)
=
{
n
,
n
[
1
,
2
]
2
}
{\displaystyle f_{\omega ^{\omega ^{\omega }}}(n)=\{n,n[1,2]2\}}
(see Bird's Array Notation )
f
ω
ω
ω
2
(
n
)
=
{
n
,
n
[
1
,
1
,
2
]
2
}
{\displaystyle f_{\omega ^{\omega ^{\omega ^{2}}}}(n)=\{n,n[1,1,2]2\}}
f
ω
ω
ω
ω
(
n
)
=
{
n
,
n
[
1
[
2
]
2
]
2
}
{\displaystyle f_{\omega ^{\omega ^{\omega ^{\omega }}}}(n)=\{n,n[1[2]2]2\}}
f
ϵ
0
(
n
)
=
{
n
,
n
[
1
∖
2
]
2
}
{\displaystyle f_{\epsilon _{0}}(n)=\{n,n[1{\backslash }2]2\}}
f
ω
ω
ϵ
0
+
1
(
n
)
=
{
n
,
n
[
1
[
1
∖
2
]
2
∖
2
]
2
}
{\displaystyle f_{\omega ^{\omega ^{\epsilon _{0}+1}}}(n)=\{n,n[1[1{\backslash }2]2{\backslash }2]2\}}
f
ω
ω
ω
ϵ
0
+
1
(
n
)
=
{
n
,
n
[
1
[
1
[
1
∖
2
]
2
∖
2
]
2
∖
2
]
2
}
{\displaystyle f_{\omega ^{\omega ^{\omega ^{\epsilon _{0}+1}}}}(n)=\{n,n[1[1[1{\backslash }2]2{\backslash }2]2{\backslash }2]2\}}
f
ϵ
1
(
n
)
=
{
n
,
n
[
1
∖
3
]
2
}
{\displaystyle f_{\epsilon _{1}}(n)=\{n,n[1{\backslash }3]2\}}
f
ϵ
2
(
n
)
=
{
n
,
n
[
1
∖
4
]
2
}
{\displaystyle f_{\epsilon _{2}}(n)=\{n,n[1{\backslash }4]2\}}
f
ϵ
ω
(
n
)
=
{
n
,
n
[
1
∖
1
,
2
]
2
}
{\displaystyle f_{\epsilon _{\omega }}(n)=\{n,n[1{\backslash }1,2]2\}}
f
ϵ
ω
ω
(
n
)
=
{
n
,
n
[
1
∖
1
[
2
]
2
]
2
}
{\displaystyle f_{\epsilon _{\omega ^{\omega }}}(n)=\{n,n[1{\backslash }1[2]2]2\}}
f
ϵ
ϵ
0
(
n
)
=
{
n
,
n
[
1
∖
1
[
1
∖
2
]
2
]
2
}
{\displaystyle f_{\epsilon _{\epsilon _{0}}}(n)=\{n,n[1{\backslash }1[1{\backslash }2]2]2\}}
f
ϵ
ϵ
ϵ
0
(
n
)
=
{
n
,
n
[
1
∖
1
[
1
∖
1
[
1
∖
2
]
2
]
2
]
2
}
{\displaystyle f_{\epsilon _{\epsilon _{\epsilon _{0}}}}(n)=\{n,n[1{\backslash }1[1{\backslash }1[1{\backslash }2]2]2]2\}}
f
ζ
0
(
n
)
=
{
n
,
n
[
1
∖
1
∖
2
]
2
}
{\displaystyle f_{\zeta _{0}}(n)=\{n,n[1{\backslash }1{\backslash }2]2\}}
f
ϵ
ζ
0
+
1
(
n
)
=
{
n
,
n
[
1
∖
2
∖
2
]
2
}
{\displaystyle f_{\epsilon _{\zeta _{0}+1}}(n)=\{n,n[1{\backslash }2{\backslash }2]2\}}
f
ϵ
ζ
0
+
ω
(
n
)
=
{
n
,
n
[
1
∖
1
,
2
∖
2
]
2
}
{\displaystyle f_{\epsilon _{\zeta _{0}+\omega }}(n)=\{n,n[1{\backslash }1,2{\backslash }2]2\}}
f
ϵ
ζ
0
+
ϵ
0
(
n
)
=
{
n
,
n
[
1
∖
1
[
1
∖
2
]
2
∖
2
]
2
}
{\displaystyle f_{\epsilon _{\zeta _{0}+\epsilon _{0}}}(n)=\{n,n[1{\backslash }1{[1{\backslash }2]}2{\backslash }2]2\}}
f
ϵ
ζ
0
2
(
n
)
=
{
n
,
n
[
1
∖
1
[
1
∖
1
∖
2
]
2
∖
2
]
2
}
{\displaystyle f_{\epsilon _{\zeta _{0}2}}(n)=\{n,n[1{\backslash }1{[1{\backslash }1{\backslash }2]}2{\backslash }2]2\}}
f
ϵ
ϵ
ζ
0
+
1
(
n
)
=
{
n
,
n
[
1
∖
1
[
1
∖
2
∖
2
]
2
∖
2
]
2
}
{\displaystyle f_{\epsilon _{\epsilon _{\zeta _{0}+1}}}(n)=\{n,n[1{\backslash }1{[1{\backslash }2{\backslash }2]}2{\backslash }2]2\}}
f
ζ
1
(
n
)
=
{
n
,
n
[
1
∖
1
∖
3
]
2
}
{\displaystyle f_{\zeta _{1}}(n)=\{n,n[1{\backslash }1{\backslash }3]2\}}
f
ζ
ω
(
n
)
=
{
n
,
n
[
1
∖
1
∖
1
,
2
]
2
}
{\displaystyle f_{\zeta _{\omega }}(n)=\{n,n[1{\backslash }1{\backslash }1,2]2\}}
f
ζ
ϵ
0
(
n
)
=
{
n
,
n
[
1
∖
1
∖
1
[
1
∖
2
]
2
]
2
}
{\displaystyle f_{\zeta _{\epsilon _{0}}}(n)=\{n,n[1{\backslash }1{\backslash }1[1{\backslash }2]2]2\}}
f
ζ
ζ
0
(
n
)
=
{
n
,
n
[
1
∖
1
∖
1
[
1
∖
1
∖
2
]
2
]
2
}
{\displaystyle f_{\zeta _{\zeta _{0}}}(n)=\{n,n[1{\backslash }1{\backslash }1[1{\backslash }1{\backslash }2]2]2\}}
f
η
0
(
n
)
=
{
n
,
n
[
1
∖
1
∖
1
∖
2
]
2
}
{\displaystyle f_{\eta _{0}}(n)=\{n,n[1{\backslash }1{\backslash }1{\backslash }2]2\}}
f
φ
(
4
,
0
)
(
n
)
=
{
n
,
n
[
1
∖
1
∖
1
∖
1
∖
2
]
2
}
{\displaystyle f_{\varphi (4,0)}(n)=\{n,n[1{\backslash }1{\backslash }1{\backslash }1{\backslash }2]2\}}
f
φ
(
m
,
0
)
(
n
)
=
{
n
,
n
[
1
∖
1
∖
1
⋯
1
∖
2
]
2
}
{\displaystyle f_{\varphi (m,0)}(n)=\{n,n[1{\backslash }1{\backslash }1{\cdots }1{\backslash }2]2\}}
(with m backslashes)
f
φ
(
ω
,
0
)
(
n
)
=
{
n
,
n
[
1
[
2
¬
2
]
2
]
2
}
{\displaystyle f_{\varphi (\omega ,0)}(n)=\{n,n[1[2{\neg }2]2]2\}}
f
ϵ
φ
(
ω
,
0
)
+
1
(
n
)
=
{
n
,
n
[
1
∖
2
[
2
¬
2
]
2
]
2
}
{\displaystyle f_{\epsilon _{\varphi (\omega ,0)+1}}(n)=\{n,n[1{\backslash }2[2{\neg }2]2]2\}}
f
ζ
φ
(
ω
,
0
)
+
1
(
n
)
=
{
n
,
n
[
1
∖
1
∖
2
[
2
¬
2
]
2
]
2
}
{\displaystyle f_{\zeta _{\varphi (\omega ,0)+1}}(n)=\{n,n[1{\backslash }1{\backslash }2[2{\neg }2]2]2\}}
f
η
φ
(
ω
,
0
)
+
1
(
n
)
=
{
n
,
n
[
1
∖
1
∖
1
∖
2
[
2
¬
2
]
2
]
2
}
{\displaystyle f_{\eta _{\varphi (\omega ,0)+1}}(n)=\{n,n[1{\backslash }1{\backslash }1{\backslash }2[2{\neg }2]2]2\}}
f
φ
(
ω
,
1
)
(
n
)
=
{
n
,
n
[
1
[
2
¬
2
]
3
]
2
}
{\displaystyle f_{\varphi (\omega ,1)}(n)=\{n,n[1[2{\neg }2]3]2\}}
f
φ
(
ω
,
2
)
(
n
)
=
{
n
,
n
[
1
[
2
¬
2
]
4
]
2
}
{\displaystyle f_{\varphi (\omega ,2)}(n)=\{n,n[1[2{\neg }2]4]2\}}
f
φ
(
ω
,
ω
)
(
n
)
=
{
n
,
n
[
1
[
2
¬
2
]
1
,
2
]
2
}
{\displaystyle f_{\varphi (\omega ,\omega )}(n)=\{n,n[1[2{\neg }2]1,2]2\}}
f
φ
(
ω
,
ϵ
0
)
(
n
)
=
{
n
,
n
[
1
[
2
¬
2
]
1
[
1
∖
2
]
2
]
2
}
{\displaystyle f_{\varphi (\omega ,\epsilon _{0})}(n)=\{n,n[1[2{\neg }2]1[1{\backslash }2]2]2\}}
f
φ
(
ω
,
ζ
0
)
(
n
)
=
{
n
,
n
[
1
[
2
¬
2
]
1
[
1
∖
1
∖
2
]
2
]
2
}
{\displaystyle f_{\varphi (\omega ,\zeta _{0})}(n)=\{n,n[1[2{\neg }2]1[1{\backslash }1{\backslash }2]2]2\}}
f
φ
(
ω
,
φ
(
ω
,
0
)
)
(
n
)
=
{
n
,
n
[
1
[
2
¬
2
]
1
[
1
[
2
¬
2
]
2
]
2
]
2
}
{\displaystyle f_{\varphi (\omega ,\varphi (\omega ,0))}(n)=\{n,n[1[2{\neg }2]1[1[2{\neg }2]2]2]2\}}
f
φ
(
ω
,
φ
(
ω
,
φ
(
ω
,
0
)
)
)
(
n
)
=
{
n
,
n
[
1
[
2
¬
2
]
1
[
1
[
2
¬
2
]
1
[
1
[
2
¬
2
]
2
]
2
]
2
]
2
}
{\displaystyle f_{\varphi (\omega ,\varphi (\omega ,\varphi (\omega ,0)))}(n)=\{n,n[1[2{\neg }2]1[1[2{\neg }2]1[1[2{\neg }2]2]2]2]2\}}
f
φ
(
ω
+
1
,
0
)
(
n
)
=
{
n
,
n
[
1
[
2
¬
2
]
1
∖
2
]
2
}
{\displaystyle f_{\varphi (\omega +1,0)}(n)=\{n,n[1[2{\neg }2]1{\backslash }2]2\}}
f
φ
(
ω
+
2
,
0
)
(
n
)
=
{
n
,
n
[
1
[
2
¬
2
]
1
∖
1
∖
2
]
2
}
{\displaystyle f_{\varphi (\omega +2,0)}(n)=\{n,n[1[2{\neg }2]1{\backslash }1{\backslash }2]2\}}
f
φ
(
ω
2
,
0
)
(
n
)
=
{
n
,
n
[
1
[
2
¬
2
]
1
[
2
¬
2
]
2
]
2
}
{\displaystyle f_{\varphi (\omega 2,0)}(n)=\{n,n[1[2{\neg }2]1[2{\neg }2]2]2\}}
f
φ
(
ω
2
,
0
)
(
n
)
=
{
n
,
n
[
1
[
3
¬
2
]
2
]
2
}
{\displaystyle f_{\varphi (\omega ^{2},0)}(n)=\{n,n[1[3{\neg }2]2]2\}}
f
φ
(
ω
3
,
0
)
(
n
)
=
{
n
,
n
[
1
[
4
¬
2
]
2
]
2
}
{\displaystyle f_{\varphi (\omega ^{3},0)}(n)=\{n,n[1[4{\neg }2]2]2\}}
f
φ
(
ω
ω
,
0
)
(
n
)
=
{
n
,
n
[
1
[
1
,
2
¬
2
]
2
]
2
}
{\displaystyle f_{\varphi (\omega ^{\omega },0)}(n)=\{n,n[1[1,2{\neg }2]2]2\}}
f
φ
(
ω
ω
ω
,
0
)
(
n
)
=
{
n
,
n
[
1
[
1
[
2
]
2
¬
2
]
2
]
2
}
{\displaystyle f_{\varphi (\omega ^{\omega ^{\omega }},0)}(n)=\{n,n[1[1[2]2{\neg }2]2]2\}}
f
φ
(
ϵ
0
,
0
)
(
n
)
=
{
n
,
n
[
1
[
1
[
1
∖
2
]
2
¬
2
]
2
]
2
}
{\displaystyle f_{\varphi ({\epsilon _{0}},0)}(n)=\{n,n[1[1[1{\backslash }2]2{\neg }2]2]2\}}
f
Γ
0
(
n
)
=
{
n
,
n
[
1
[
1
∖
2
¬
2
]
2
]
2
}
{\displaystyle f_{\Gamma _{0}}(n)=\{n,n[1[1{\backslash }2{\neg }2]2]2\}}
f
Γ
1
(
n
)
=
{
n
,
n
[
1
[
1
∖
2
¬
2
]
3
]
2
}
{\displaystyle f_{\Gamma _{1}}(n)=\{n,n[1[1{\backslash }2{\neg }2]3]2\}}
f
Γ
Γ
0
(
n
)
=
{
n
,
n
[
1
[
1
∖
2
¬
2
]
1
[
1
[
1
∖
2
¬
2
]
2
]
2
]
2
}
{\displaystyle f_{\Gamma _{\Gamma _{0}}}(n)=\{n,n[1[1{\backslash }2{\neg }2]1[1[1{\backslash }2{\neg }2]2]2]2\}}
f
φ
(
1
,
1
,
0
)
(
n
)
=
{
n
,
n
[
1
[
1
∖
2
¬
2
]
1
∖
2
]
2
}
{\displaystyle f_{\varphi (1,1,0)}(n)=\{n,n[1[1{\backslash }2{\neg }2]1{\backslash }2]2\}}
f
φ
(
1
,
2
,
0
)
(
n
)
=
{
n
,
n
[
1
[
1
∖
2
¬
2
]
1
∖
1
∖
2
]
2
}
{\displaystyle f_{\varphi (1,2,0)}(n)=\{n,n[1[1{\backslash }2{\neg }2]1{\backslash }1{\backslash }2]2\}}
f
φ
(
2
,
0
,
0
)
(
n
)
=
{
n
,
n
[
1
[
1
∖
2
¬
2
]
1
[
1
∖
2
¬
2
]
2
]
2
}
{\displaystyle f_{\varphi (2,0,0)}(n)=\{n,n[1[1{\backslash }2{\neg }2]1[1{\backslash }2{\neg }2]2]2\}}
f
φ
(
ω
,
0
,
0
)
(
n
)
=
{
n
,
n
[
1
[
2
∖
2
¬
2
]
2
]
2
}
{\displaystyle f_{\varphi (\omega ,0,0)}(n)=\{n,n[1[2{\backslash }2{\neg }2]2]2\}}
f
φ
(
Γ
0
,
0
,
0
)
(
n
)
=
{
n
,
n
[
1
[
1
[
1
[
1
∖
2
¬
2
]
2
]
2
∖
2
¬
2
]
2
]
2
}
{\displaystyle f_{\varphi (\Gamma _{0},0,0)}(n)=\{n,n[1[1[1[1{\backslash }2{\neg }2]2]2{\backslash }2{\neg }2]2]2\}}
f
φ
(
1
,
0
,
0
,
0
)
(
n
)
=
{
n
,
n
[
1
[
1
∖
3
¬
2
]
2
]
2
}
{\displaystyle f_{\varphi (1,0,0,0)}(n)=\{n,n[1[1{\backslash }3{\neg }2]2]2\}}
f
φ
(
1
,
0
,
0
,
0
,
0
)
(
n
)
=
{
n
,
n
[
1
[
1
∖
4
¬
2
]
2
]
2
}
{\displaystyle f_{\varphi (1,0,0,0,0)}(n)=\{n,n[1[1{\backslash }4{\neg }2]2]2\}}
f
ψ
(
Ω
Ω
ω
)
(
n
)
=
{
n
,
n
[
1
[
1
∖
1
,
2
¬
2
]
2
]
2
}
{\displaystyle f_{\psi (\Omega ^{\Omega ^{\omega }})}(n)=\{n,n[1[1{\backslash }1,2{\neg }2]2]2\}}
f
ψ
(
Ω
Ω
ψ
(
Ω
Ω
)
)
(
n
)
=
{
n
,
n
[
1
[
1
∖
1
[
1
[
1
∖
2
¬
2
]
2
]
2
¬
2
]
2
]
2
}
{\displaystyle f_{\psi (\Omega ^{\Omega ^{\psi (\Omega ^{\Omega })}})}(n)=\{n,n[1[1{\backslash }1[1[1{\backslash }2{\neg }2]2]2{\neg }2]2]2\}}
f
ψ
(
Ω
Ω
Ω
)
(
n
)
=
{
n
,
n
[
1
[
1
∖
1
∖
2
¬
2
]
2
]
2
}
{\displaystyle f_{\psi (\Omega ^{\Omega ^{\Omega }})}(n)=\{n,n[1[1{\backslash }1{\backslash }2{\neg }2]2]2\}}
f
ψ
(
Ω
Ω
Ω
2
)
(
n
)
=
{
n
,
n
[
1
[
1
∖
1
∖
1
∖
2
¬
2
]
2
]
2
}
{\displaystyle f_{\psi (\Omega ^{\Omega ^{\Omega ^{2}}})}(n)=\{n,n[1[1{\backslash }1{\backslash }1{\backslash }2{\neg }2]2]2\}}
f
ψ
(
Ω
Ω
Ω
ω
)
(
n
)
=
{
n
,
n
[
1
[
1
[
2
¬
2
]
2
¬
2
]
2
]
2
}
{\displaystyle f_{\psi (\Omega ^{\Omega ^{\Omega ^{\omega }}})}(n)=\{n,n[1[1[2{\neg }2]2{\neg }2]2]2\}}
f
ψ
(
Ω
Ω
Ω
ψ
(
Ω
Ω
Ω
)
)
(
n
)
=
{
n
,
n
[
1
[
1
[
1
[
1
[
1
∖
1
∖
2
¬
2
]
2
]
2
¬
2
]
2
¬
2
]
2
]
2
}
{\displaystyle f_{\psi (\Omega ^{\Omega ^{\Omega ^{\psi (\Omega ^{\Omega ^{\Omega }})}}})}(n)=\{n,n[1[1[1[1[1{\backslash }1{\backslash }2{\neg }2]2]2{\neg }2]2{\neg }2]2]2\}}
f
ψ
(
Ω
Ω
Ω
Ω
)
(
n
)
=
{
n
,
n
[
1
[
1
[
1
∖
2
¬
2
]
2
¬
2
]
2
]
2
}
{\displaystyle f_{\psi (\Omega ^{\Omega ^{\Omega ^{\Omega }}})}(n)=\{n,n[1[1[1{\backslash }2{\neg }2]2{\neg }2]2]2\}}
f
ψ
(
Ω
2
)
(
n
)
=
{
n
,
n
[
1
[
1
¬
3
]
2
]
2
}
{\displaystyle f_{\psi (\Omega _{2})}(n)=\{n,n[1[1{\neg }3]2]2\}}
f
ψ
(
Ω
2
+
1
)
(
n
)
=
{
n
,
n
[
1
∖
2
[
1
¬
3
]
2
]
2
}
{\displaystyle f_{\psi (\Omega _{2}+1)}(n)=\{n,n[1{\backslash }2[1{\neg }3]2]2\}}
f
ψ
(
Ω
2
+
ω
)
(
n
)
=
{
n
,
n
[
1
∖
1
,
2
[
1
¬
3
]
2
]
2
}
{\displaystyle f_{\psi (\Omega _{2}+\omega )}(n)=\{n,n[1{\backslash }1,2[1{\neg }3]2]2\}}
f
ψ
(
Ω
2
+
ψ
(
Ω
Ω
)
)
(
n
)
=
{
n
,
n
[
1
∖
1
[
1
[
1
∖
2
¬
2
]
2
]
2
[
1
¬
3
]
2
]
2
}
{\displaystyle f_{\psi (\Omega _{2}+\psi (\Omega ^{\Omega }))}(n)=\{n,n[1{\backslash }1[1[1{\backslash }2{\neg }2]2]2[1{\neg }3]2]2\}}
f
ψ
(
Ω
2
+
ψ
(
Ω
Ω
ω
)
)
(
n
)
=
{
n
,
n
[
1
∖
1
[
1
[
1
∖
1
,
2
¬
2
]
2
]
2
[
1
¬
3
]
2
]
2
}
{\displaystyle f_{\psi (\Omega _{2}+\psi (\Omega ^{\Omega ^{\omega }}))}(n)=\{n,n[1{\backslash }1[1[1{\backslash }1,2{\neg }2]2]2[1{\neg }3]2]2\}}
f
ψ
(
Ω
2
+
ψ
(
Ω
Ω
Ω
)
)
(
n
)
=
{
n
,
n
[
1
∖
1
[
1
[
1
∖
1
∖
2
¬
2
]
2
]
2
[
1
¬
3
]
2
]
2
}
{\displaystyle f_{\psi (\Omega _{2}+\psi (\Omega ^{\Omega ^{\Omega }}))}(n)=\{n,n[1{\backslash }1[1[1{\backslash }1{\backslash }2{\neg }2]2]2[1{\neg }3]2]2\}}
f
ψ
(
Ω
2
+
ψ
(
Ω
Ω
Ω
Ω
)
)
(
n
)
=
{
n
,
n
[
1
∖
1
[
1
[
1
[
1
∖
2
¬
2
]
2
¬
2
]
2
]
2
[
1
¬
3
]
2
]
2
}
{\displaystyle f_{\psi (\Omega _{2}+\psi (\Omega ^{\Omega ^{\Omega ^{\Omega }}}))}(n)=\{n,n[1{\backslash }1[1[1[1{\backslash }2{\neg }2]2{\neg }2]2]2[1{\neg }3]2]2\}}
f
ψ
(
Ω
2
+
ψ
(
Ω
2
)
)
(
n
)
=
{
n
,
n
[
1
∖
1
[
1
[
1
¬
3
]
2
]
2
[
1
¬
3
]
2
]
2
}
{\displaystyle f_{\psi (\Omega _{2}+\psi (\Omega _{2}))}(n)=\{n,n[1{\backslash }1[1[1{\neg }3]2]2[1{\neg }3]2]2\}}
f
ψ
(
Ω
2
+
Ω
)
(
n
)
=
{
n
,
n
[
1
∖
1
∖
2
[
1
¬
3
]
2
]
2
}
{\displaystyle f_{\psi (\Omega _{2}+\Omega )}(n)=\{n,n[1{\backslash }1{\backslash }2[1{\neg }3]2]2\}}
f
ψ
(
Ω
2
+
Ω
2
)
(
n
)
=
{
n
,
n
[
1
∖
1
∖
1
∖
2
[
1
¬
3
]
2
]
2
}
{\displaystyle f_{\psi (\Omega _{2}+\Omega ^{2})}(n)=\{n,n[1{\backslash }1{\backslash }1{\backslash }2[1{\neg }3]2]2\}}
f
ψ
(
Ω
2
+
Ω
ω
)
(
n
)
=
{
n
,
n
[
1
[
2
¬
2
]
2
[
1
¬
3
]
2
]
2
}
{\displaystyle f_{\psi (\Omega _{2}+\Omega ^{\omega })}(n)=\{n,n[1[2{\neg }2]2[1{\neg }3]2]2\}}
f
ψ
(
Ω
2
+
Ω
Ω
)
(
n
)
=
{
n
,
n
[
1
[
1
∖
2
¬
2
]
2
[
1
¬
3
]
2
]
2
}
{\displaystyle f_{\psi (\Omega _{2}+\Omega ^{\Omega })}(n)=\{n,n[1[1{\backslash }2{\neg }2]2[1{\neg }3]2]2\}}
f
ψ
(
Ω
2
+
ψ
1
(
Ω
2
)
)
(
n
)
=
{
n
,
n
[
1
[
1
¬
3
]
3
]
2
}
{\displaystyle f_{\psi (\Omega _{2}+\psi _{1}(\Omega _{2}))}(n)=\{n,n[1[1{\neg }3]3]2\}}
f
ψ
(
Ω
2
+
ψ
1
(
Ω
2
+
ψ
1
(
Ω
2
)
)
)
(
n
)
=
{
n
,
n
[
1
[
1
¬
3
]
1
[
1
¬
3
]
2
]
2
}
{\displaystyle f_{\psi (\Omega _{2}+\psi _{1}(\Omega _{2}+\psi _{1}(\Omega _{2})))}(n)=\{n,n[1[1{\neg }3]1[1{\neg }3]2]2\}}
f
ψ
(
Ω
2
+
ψ
1
(
Ω
2
+
ψ
1
(
Ω
2
+
1
)
)
)
(
n
)
=
{
n
,
n
[
1
[
2
¬
3
]
2
]
2
}
{\displaystyle f_{\psi (\Omega _{2}+\psi _{1}(\Omega _{2}+\psi _{1}(\Omega _{2}+1)))}(n)=\{n,n[1[2{\neg }3]2]2\}}
f
ψ
(
Ω
2
+
ψ
1
(
Ω
2
+
ψ
1
(
Ω
2
+
ψ
1
(
Ω
2
)
)
)
)
(
n
)
=
{
n
,
n
[
1
[
1
[
1
¬
3
]
2
¬
3
]
2
]
2
}
{\displaystyle f_{\psi (\Omega _{2}+\psi _{1}(\Omega _{2}+\psi _{1}(\Omega _{2}+\psi _{1}(\Omega _{2}))))}(n)=\{n,n[1[1[1{\neg }3]2{\neg }3]2]2\}}
f
ψ
(
Ω
2
2
)
(
n
)
=
{
n
,
n
[
1
[
1
¬
4
]
2
]
2
}
{\displaystyle f_{\psi (\Omega _{2}2)}(n)=\{n,n[1[1{\neg }4]2]2\}}
f
ψ
(
Ω
2
3
)
(
n
)
=
{
n
,
n
[
1
[
1
¬
5
]
2
]
2
}
{\displaystyle f_{\psi (\Omega _{2}3)}(n)=\{n,n[1[1{\neg }5]2]2\}}
f
ψ
(
Ω
2
ω
)
(
n
)
=
{
n
,
n
[
1
[
1
¬
1
,
2
]
2
]
2
}
{\displaystyle f_{\psi (\Omega _{2}\omega )}(n)=\{n,n[1[1{\neg }1,2]2]2\}}
f
ψ
(
Ω
2
ψ
(
0
)
)
(
n
)
=
{
n
,
n
[
1
[
1
¬
1
[
1
∖
2
]
2
]
2
]
2
}
{\displaystyle f_{\psi (\Omega _{2}\psi (0))}(n)=\{n,n[1[1{\neg }1[1{\backslash }2]2]2]2\}}
f
ψ
(
Ω
2
ψ
(
Ω
Ω
)
)
(
n
)
=
{
n
,
n
[
1
[
1
¬
1
[
1
[
1
∖
2
¬
2
]
2
]
2
]
2
]
2
}
{\displaystyle f_{\psi (\Omega _{2}\psi (\Omega ^{\Omega }))}(n)=\{n,n[1[1{\neg }1[1[1{\backslash }2{\neg }2]2]2]2]2\}}
f
ψ
(
Ω
2
ψ
(
Ω
2
)
)
(
n
)
=
{
n
,
n
[
1
[
1
¬
1
[
1
[
1
¬
3
]
2
]
2
]
2
]
2
}
{\displaystyle f_{\psi (\Omega _{2}\psi (\Omega _{2}))}(n)=\{n,n[1[1{\neg }1[1[1{\neg }3]2]2]2]2\}}
f
ψ
(
Ω
2
Ω
)
(
n
)
=
{
n
,
n
[
1
[
1
¬
1
∖
2
]
2
]
2
}
{\displaystyle f_{\psi (\Omega _{2}\Omega )}(n)=\{n,n[1[1{\neg }1{\backslash }2]2]2\}}
f
ψ
(
Ω
2
Ω
Ω
)
(
n
)
=
{
n
,
n
[
1
[
1
¬
1
[
1
∖
2
¬
2
]
2
]
2
]
2
}
{\displaystyle f_{\psi (\Omega _{2}\Omega ^{\Omega })}(n)=\{n,n[1[1{\neg }1[1{\backslash }2{\neg }2]2]2]2\}}
f
ψ
(
Ω
2
ψ
1
(
Ω
2
)
)
(
n
)
=
{
n
,
n
[
1
[
1
¬
1
[
1
¬
3
]
2
]
2
]
2
}
{\displaystyle f_{\psi (\Omega _{2}\psi _{1}(\Omega _{2}))}(n)=\{n,n[1[1{\neg }1[1{\neg }3]2]2]2\}}
f
ψ
(
Ω
2
2
)
(
n
)
=
{
n
,
n
[
1
[
1
¬
1
¬
2
]
2
]
2
}
{\displaystyle f_{\psi (\Omega _{2}^{2})}(n)=\{n,n[1[1{\neg }1{\neg }2]2]2\}}
f
ψ
(
Ω
2
ω
)
(
n
)
=
{
n
,
n
[
1
[
1
[
2
∖
3
2
]
2
]
2
]
2
}
{\displaystyle f_{\psi (\Omega _{2}^{\omega })}(n)=\{n,n[1[1[2{\backslash }_{3}2]2]2]2\}}
f
ψ
(
Ω
2
Ω
2
)
(
n
)
=
{
n
,
n
[
1
[
1
[
1
∖
2
2
∖
3
2
]
2
]
2
]
2
}
{\displaystyle f_{\psi (\Omega _{2}^{\Omega _{2}})}(n)=\{n,n[1[1[1{\backslash }_{2}2{\backslash }_{3}2]2]2]2\}}
f
ψ
(
Ω
3
)
(
n
)
=
{
n
,
n
[
1
[
1
[
1
∖
3
3
]
2
]
2
]
2
}
{\displaystyle f_{\psi (\Omega _{3})}(n)=\{n,n[1[1[1{\backslash }_{3}3]2]2]2\}}
f
ψ
(
Ω
3
Ω
3
)
(
n
)
=
{
n
,
n
[
1
[
1
[
1
[
1
∖
3
2
∖
4
2
]
2
]
2
]
2
]
2
}
{\displaystyle f_{\psi (\Omega _{3}^{\Omega _{3}})}(n)=\{n,n[1[1[1[1{\backslash }_{3}2{\backslash }_{4}2]2]2]2]2\}}
f
ψ
(
Ω
4
)
(
n
)
=
{
n
,
n
[
1
[
1
[
1
[
1
∖
4
3
]
2
]
2
]
2
]
2
}
{\displaystyle f_{\psi (\Omega _{4})}(n)=\{n,n[1[1[1[1{\backslash }_{4}3]2]2]2]2\}}
f
ψ
(
Ω
ω
)
(
n
)
=
{
n
,
n
[
1
[
2
∖
1
,
2
2
]
2
]
2
}
{\displaystyle f_{\psi (\Omega _{\omega })}(n)=\{n,n[1[2{\backslash }_{1,2}2]2]2\}}
f
ψ
(
Ω
ψ
(
Ω
)
)
(
n
)
=
{
n
,
n
[
1
[
2
∖
1
[
1
∖
2
]
2
2
]
2
]
2
}
{\displaystyle f_{\psi (\Omega _{\psi (\Omega )})}(n)=\{n,n[1[2{\backslash }_{1[1{\backslash }2]2}2]2]2\}}
f
ψ
(
Ω
ψ
(
Ω
ψ
(
Ω
)
)
)
(
n
)
=
{
n
,
n
[
1
[
2
∖
1
[
2
∖
1
[
1
∖
2
]
2
2
]
2
2
]
2
]
2
}
{\displaystyle f_{\psi (\Omega _{\psi (\Omega _{\psi (\Omega )})})}(n)=\{n,n[1[2{\backslash }_{1[2{\backslash _{1[1{\backslash }2]2}}2]2}2]2]2\}}
f
ψ
(
Ω
Ω
)
(
n
)
=
{
n
,
n
[
1
[
2
∖
1
∖
2
2
]
2
]
2
}
=
(
0
,
0
,
0
)
(
1
,
1
,
1
)
(
2
,
1
,
1
)
(
3
,
1
,
0
)
[
n
]
{\displaystyle f_{\psi (\Omega _{\Omega })}(n)=\{n,n[1[2{\backslash }_{1{\backslash }2}2]2]2\}=(0,0,0)(1,1,1)(2,1,1)(3,1,0)[n]}
(see Bashicu Matrix System )
f
ψ
(
Ω
Ω
2
)
(
n
)
=
(
0
,
0
,
0
)
(
1
,
1
,
1
)
(
2
,
1
,
1
)
(
3
,
1
,
0
)
(
1
,
1
,
0
)
(
2
,
2
,
1
)
(
3
,
2
,
1
)
(
4
,
2
,
0
)
[
n
]
{\displaystyle f_{\psi ({\Omega _{\Omega _{2}}})}(n)=(0,0,0)(1,1,1)(2,1,1)(3,1,0)(1,1,0)(2,2,1)(3,2,1)(4,2,0)[n]}
f
ψ
(
Ω
Ω
ω
)
(
n
)
=
(
0
,
0
,
0
)
(
1
,
1
,
1
)
(
2
,
1
,
1
)
(
3
,
1
,
0
)
(
1
,
1
,
1
)
[
n
]
{\displaystyle f_{\psi ({\Omega _{\Omega _{\omega }}})}(n)=(0,0,0)(1,1,1)(2,1,1)(3,1,0)(1,1,1)[n]}
f
ψ
(
Ω
Ω
Ω
)
(
n
)
=
(
0
,
0
,
0
)
(
1
,
1
,
1
)
(
2
,
1
,
1
)
(
3
,
1
,
0
)
(
1
,
1
,
1
)
(
2
,
1
,
1
)
(
3
,
1
,
0
)
[
n
]
{\displaystyle f_{\psi ({\Omega _{\Omega _{\Omega }}})}(n)=(0,0,0)(1,1,1)(2,1,1)(3,1,0)(1,1,1)(2,1,1)(3,1,0)[n]}
f
ψ
(
ψ
I
(
0
)
)
(
n
)
=
(
0
,
0
,
0
)
(
1
,
1
,
1
)
(
2
,
1
,
1
)
(
3
,
1
,
0
)
(
2
,
0
,
0
)
[
n
]
{\displaystyle f_{\psi (\psi _{I}(0))}(n)=(0,0,0)(1,1,1)(2,1,1)(3,1,0)(2,0,0)[n]}
References
Buchholz, W.; Wainer, S.S (1987). "Provably Computable Functions and the Fast Growing Hierarchy". Logic and Combinatorics , edited by S. Simpson, Contemporary Mathematics, Vol. 65, AMS, 179-198.
Cichon, E. A.; Wainer, S. S. (1983), "The slow-growing and the Grzegorczyk hierarchies", The Journal of Symbolic Logic , 48 (2): 399– 408, doi :10.2307/2273557 , ISSN 0022-4812 , MR 0704094
Gallier, Jean H. (1991), "What's so special about Kruskal's theorem and the ordinal Γ0 ? A survey of some results in proof theory" , Ann. Pure Appl. Logic , 53 (3): 199– 260, doi :10.1016/0168-0072(91)90022-E , MR 1129778 [permanent dead link ] PDF's: part 1 2 3 . (In particular part 3, Section 12, pp. 59–64, "A Glimpse at Hierarchies of Fast and Slow Growing Functions".)
Girard, Jean-Yves (1981), "Π1 2 -logic. I. Dilators", Annals of Mathematical Logic , 21 (2): 75– 219, doi :10.1016/0003-4843(81)90016-4 , ISSN 0003-4843 , MR 0656793
Löb, M.H.; Wainer, S.S. (1970), "Hierarchies of number theoretic functions", Arch. Math. Logik , 13. Correction, Arch. Math. Logik , 14, 1971. Part I doi :10.1007/BF01967649 , Part 2 doi :10.1007/BF01973616 , Corrections doi :10.1007/BF01991855 .
Prömel, H. J.; Thumser, W.; Voigt, B. "Fast growing functions based on Ramsey theorems", Discrete Mathematics , v.95 n.1-3, p. 341-358, December 1991 doi :10.1016/0012-365X(91)90346-4 .
Wainer, S.S (1989). "Slow Growing Versus Fast Growing". Journal of Symbolic Logic . 54 (2): 608– 614. JSTOR 2274873 .
Examples in numerical order Expression methods
Related articles (alphabetical order)