Normalized difference water index
Normalized Difference Water Index (NDWI) may refer to one of at least two remote sensing-derived indexes related to liquid water:
One is used to monitor changes in water content of leaves, using near-infrared (NIR) and short-wave infrared (SWIR) wavelengths, proposed by Gao in 1996:[1]
Another is used to monitor changes related to water content in water bodies, using green and NIR wavelengths, defined by McFeeters (1996):
Overview
In remote sensing, ratio image or spectral rationing are enhancement techniques in which a raster pixel from one spectral band is divided by the corresponding value in another band.[2] Both the indexes above share this same functional form; the choice of bands used is what makes them appropriate for a specific purpose.
If looking to monitor vegetation in drought affected areas, then it is advisable to use NIR and SWIR. The SWIR reflectance reflects changes in both the vegetation water content and the spongy mesophyll structure in vegetation canopies. The NIR reflectance is affected by leaf internal structure and leaf dry matter content, but not by water content. The combination of the NIR with the SWIR removes variations induced by leaf internal structure and leaf dry matter content, improving the accuracy in retrieving the vegetation water content.[3]
Sentinel-2 MSI has two spectral bands in SWIR region: band 11 (central wavelength 1610 nm) and band 12 (central wavelength 2200 nm). Spectral band in NIR region with similar 20 m ground resolution is band 8A (central wavelength 865 nm). Sentinel-2 NDWI can be constructed using either combinations:
- band 8A and band 11
- band 8A and band 12
Both formulations are suitable for agricultural monitoring of drought and irrigation management.
If looking for water bodies or change in water level (e.g. flooding), then it is advisable to use the green and NIR spectral bands or green and SWIR spectral bands. Modification of normalised difference water index (MNDWI) has been suggested for improved detection of open water by replacing NIR spectral band with SWIR. [4]
Interpretation
Visual or digital interpretation of the output image/raster created is similar to NDVI:
- -1 to 0 - Bright surface with no vegetation or water content
- +1 - represent water content
For the second variant of the NDWI, another threshold can also be found in [5] that avoids creating false alarms in urban areas:
- < 0.3 - Non-water
- >= 0.3 - Water.
External links
- https://edo.jrc.ec.europa.eu/documents/factsheets/factsheet_ndwi.pdf (NDWI for crop monitoring: index by Gao, 1996)
- https://eos.com/ndwi/ (NDWI for drought stress monitoring: index by Gao, 1996)
- http://deltas.usgs.gov/fm/data/data_ndwi.aspx (regarding the McFeeters index for water bodies)
- http://space4water.org/taxonomy/term/1246 (Modification of the McFeeters index for improved detection of water bodies)
References
- ^ Gao. "NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space." 1996. http://ceeserver.cee.cornell.edu/wdp2/cee6150/Readings/Gao_1996_RSE_58_257-266_NDWI.pdf
- ^ Lillisand & Kifer
- ^ Ceccato et al. 2001
- ^ Xu, 2006: Xu, Hanqiu "Modification of Normalised Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery." International Journal of Remote Sensing 27, No. 14 (2006): 3025-3033. https://doi.org/10.1080/01431160600589179
- ^ https://www.mdpi.com/2072-4292/5/7/3544/htm