Gap junction modulation
Appearance
Gap junction modulation describes the functional manipulation of gap junctions, specialized channels that allow direct electrical and chemical communication between cells without exporting material from the cytoplasm.[1] Gap junctions play an important regulatory role in various physiological processes including signal propagation in cardiac muscles and tissue homeostasis of the liver. Modulation is required, since gap junctions must respond to their environment, whether through an increased expression or permeability. Impaired or altered modulation can have significant health implications and are associated with the pathogenesis of the liver, heart and intestines.[2][3][4]
See also
References
- ^ "Cell - Gap junctions". Encyclopedia Britannica. Retrieved 2020-04-27.
- ^ Noorman, Maartje; van der Heyden, Marcel A.G.; van Veen, Toon A.B.; Cox, Moniek G.P.J.; Hauer, Richard N.W.; de Bakker, Jacques M.T.; van Rijen, Harold V.M. (2009-04-01). "Cardiac cell–cell junctions in health and disease: Electrical versus mechanical coupling". Journal of Molecular and Cellular Cardiology. 47 (1): 23–31. doi:10.1016/j.yjmcc.2009.03.016. ISSN 0022-2828.
- ^ Hoagland, Daniel T.; Santos, Webster; Poelzing, Steven; Gourdie, Robert G. (2019-07-01). "The role of the gap junction perinexus in cardiac conduction: Potential as a novel anti-arrhythmic drug target". Progress in Biophysics and Molecular Biology. Physics meets medicine - at the heart of active matter. 144: 41–50. doi:10.1016/j.pbiomolbio.2018.08.003. ISSN 0079-6107. PMC 6422736. PMID 30241906.
{{cite journal}}
: CS1 maint: PMC format (link) - ^ Hernández-Guerra, Manuel; Hadjihambi, Anna; Jalan, Rajiv (2018-12-29). "Gap junctions in liver disease: Implications for pathogenesis and therapy". Journal of Hepatology. 70 (4): 759–772. doi:10.1016/j.jhep.2018.12.023. ISSN 0168-8278.