Jump to content

Additive basis

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by David Eppstein (talk | contribs) at 22:04, 25 April 2020 (Split off R with possibilities into separate article). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In additive number theory, an additive basis is a set of natural numbers with the property that, for some finite number , every natural number can be expressed as a sum of or fewer elements of . That is, the sumset of copies of consists of all natural numbers. The order or degree of an additive basis is the number . When the context of additive number theory is clear, an additive basis may simply be called a basis.

The unproven Erdős–Turán conjecture on additive bases states that, for any additive basis of order , the number of representations of the number as a sum of elements of the basis tends to infinity in the limit as goes to infinity. (More precisely, the number of representations has no finite supremum.)[1] The related Erdős–Fuchs theorem states that the number of representations cannot be close to a linear function.[2] The Erdős–Tetali theorem states that, for every , there exists an additive basis of order whose number of representations of each is .[3]

A theorem of Lev Schnirelmann states that any sequence with positive Schnirelmann density is an additive basis. This follows from a stronger theorem of Henry Mann according to which the Schnirelmann density of a sum of two sequences is at least the sum of their Schnirelmann densities. Thus, any sequence of Schnirelmann density is an additive basis of order at most .[4]

References

  1. ^ Erdős, Paul; Turán, Pál (1941), "On a problem of Sidon in additive number theory, and on some related problems", Journal of the London Mathematical Society, 16 (4): 212–216, doi:10.1112/jlms/s1-16.4.212
  2. ^ Erdős, P.; Fuchs, W. H. J. (1956), "On a problem of additive number theory", Journal of the London Mathematical Society, 31 (1): 67–73, doi:10.1112/jlms/s1-31.1.67
  3. ^ Erdős, Paul; Tetali, Prasad (1990), "Representations of integers as the sum of terms", Random Structures & Algorithms, 1 (3): 245–261, doi:10.1002/rsa.3240010302, MR 1099791
  4. ^ Mann, Henry B. (1942), "A proof of the fundamental theorem on the density of sums of sets of positive integers", Annals of Mathematics, Second Series, 43 (3): 523–527, doi:10.2307/1968807, JSTOR 1968807, MR 0006748, Zbl 0061.07406