Jump to content

Talk:Gelfand–Naimark theorem

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by 144.200.0.161 (talk) at 20:53, 17 April 2020 (Just the opposite: new section). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
WikiProject iconMathematics Start‑class Low‑priority
WikiProject iconThis article is within the scope of WikiProject Mathematics, a collaborative effort to improve the coverage of mathematics on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.
StartThis article has been rated as Start-class on Wikipedia's content assessment scale.
LowThis article has been rated as Low-priority on the project's priority scale.
WikiProject iconRussia: Science & education Start‑class Low‑importance
WikiProject iconThis article is within the scope of WikiProject Russia, a WikiProject dedicated to coverage of Russia on Wikipedia.
To participate: Feel free to edit the article attached to this page, join up at the project page, or contribute to the project discussion.
StartThis article has been rated as Start-class on Wikipedia's content assessment scale.
LowThis article has been rated as Low-importance on the project's importance scale.
Taskforce icon
This article is supported by the science and education in Russia task force.

Hm, seems to me the article's got some problems. In particular, the statement that "...Gelfand–Naimark representation depends only on the GNS construction and...In general it will not be a faithful representation." is confusing and misleading, since the very content of the theorem is that every C*-algebra is isomorphic to a norm closed *-algebra of operator. The GNS construction for a single state will not yield a faithful representation, and I assume that's what the article meant. Also, the "C*-seminorm" as defined is a norm, in fact the very C*-norm that is on A to begin with. This is again the content of the theorem. Mct mht (talk) 11:58, 30 December 2010 (UTC)[reply]

Just the opposite

"This result was proven by Israel Gelfand and Mark Naimark in 1943 and was a significant point in the development of the theory of C*-algebras since it established the possibility of considering a C*-algebra as an abstract algebraic entity without reference to particular realizations as an operator algebra."

Just the opposite ! You can "consider" abstract C*-algebra abstractly, without needing the Gelfand-Naimark to justify your work.

How about:

"This result was proven by Israel Gelfand and Mark Naimark in 1943 and was a significant point in the development of the theory of C*-algebras, since it shows that to obtain a result for abstract C*-algebra it suffices to prove it for concrete C*-algebras (i.e. operator algebras on a Hilbert space)."

144.200.0.161 (talk) 20:53, 17 April 2020 (UTC)[reply]