Jump to content

Copulas in signal processing

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Earthianyogi (talk | contribs) at 18:44, 7 April 2020. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

 Comment: Edited according the suggestions provided by Sulfurboy and Maury Markowitz'. thanks

A copula is a mathematical function that provides a relationship between marginal distributions of random variables and their joint distributions. Copula is important because it represents a dependence structure without using marginal distributions. Copula have been widely used in the field of finance, but its use in signal processing is relatively new. Copula have been employed in the field of wireless communication for classifying radar signals, change detection in remote sensing applications, and EEG signal processing in medicine.

Introduction

Using Sklar's theorem, a copula can be described as a cumulative distribution function (CDF) on a unit-space with uniform marginal distributions on the interval (0, 1). The CDF of a random variable X is the probability that X will take a value less than or equal to x when evaluated at x itself. Copula can represent a dependence structure without using marginal distributions. Therefore, it is simple to transform the uniformly distributed variables of copula (u, v, and so on) into the marginal variables (x, y, and so on) by the inverse marginal cumulative distribution function[1]. Using the chain rule, copula distribution function can be partially differentiated with respect to the uniformly distributed variables of copula, and it is possible to express the multivariate probability density function (PDF) as a product of a multivariate copula density function and marginal PDF''s[2]. The mathematics for converting a copula distribution function into a copula density function is shown for a bivariate case, and a family of copulas used in signal processing are listed in a TABLE 1.

Mathematical derivation

For any two random variables X and Y, the continuous joint probability distribution function can be written as

where and are the marginal cumulative distribution functions of the random variables X and Y, respectively.

then the copula distribution function can be defined using Sklar's theorem[3][4] as:

,

where and are marginal distribution functions, joint and .

We start by using the relationship between joint probability density function (PDF) and joint cumulative distribution function (CDF) and its partial derivatives.

where is the copula density function, and are the marginal probability density functions of X and Y, respectively.

Summary table

The use of copula in signal processing is fairly new compared to finance. Here, a family of new bivariate copula density functions are listed with importance in the area of signal processing. Here, and are marginal distributions functions and and are marginal density functions

Coupla density: c (u , v) Use
Gaussian supervised classification of synthetic aperture radar (SAR) images[5],

validating biometric authentication[6], modeling stochastic dependence in large-scale integration of wind power[7], unsupervised classification of radar signals[8]

Exponential queuing system with infinitely servers[9]
Rayleigh bivariate Exponential, Rayleigh and Weibull copulas have been proved to be equivalent[10][11][12] change detection from SAR images[13]
Weibull bivariate Exponential, Rayleigh and Weibull copulas have been proved to be equivalent digital communication over fading channels[14]
Log-normal bivariate log-normal copula and Gaussian copula are equivalent[12][11] shadow fading along with multipath effect in wireless channel[15][16]
Farlie–Gumbel–Morgenstern (FGM) information processing of uncertainty in knowledge-based systems[17]
Clayton location estimation of random signal source and hypothesis testing using heterogeneous data[18][19]
Frank change detection in remote sensing applications[20]
Student's t supervised SAR image classification[13],

fusion of correlated sensor decisions[21]

Nakagami-m
Rician

TABLE 1: Copula density function of a family of copulas used in signal processing.

References

  1. ^ Bellmann, K. (1978). "BATSCHELET, E.: Introduction to Mathematics for Life Scientists. 2nd Ed. Springer-Verlag, Berlin-Heidelberg-New York 1975. 643 S., 227 Abb., DM 38,-". Biometrical Journal. 20 (5): 531–531. doi:10.1002/bimj.4710200510. ISSN 0323-3847.
  2. ^ Cherubini, Umberto; Luciano, Elisa; Vecchiato, Walter (2004). "Copula Methods in Finance". doi:10.1002/9781118673331. {{cite journal}}: Cite journal requires |journal= (help)
  3. ^ Appell, Paul; Goursat, Edouard (1895). Théorie des fonctions algébriques et de leurs intégrales étude des fonctions analytiques sur une surface de Riemann / par Paul Appell, Édouard Goursat. Paris :: Gauthier-Villars,.{{cite book}}: CS1 maint: extra punctuation (link)
  4. ^ Durante, Fabrizio; Fernández-Sánchez, Juan; Sempi, Carlo (2013). "A topological proof of Sklar's theorem". Applied Mathematics Letters. 26 (9): 945–948. doi:10.1016/j.aml.2013.04.005. ISSN 0893-9659.
  5. ^ Storvik, B.; Storvik, G.; Fjortoft, R. (2009). "On the Combination of Multisensor Data Using Meta-Gaussian Distributions". IEEE Transactions on Geoscience and Remote Sensing. 47 (7): 2372–2379. doi:10.1109/tgrs.2009.2012699. ISSN 0196-2892.
  6. ^ Dass, S.C.; Yongfang Zhu; Jain, A.K. (2006). "Validating a Biometric Authentication System: Sample Size Requirements". IEEE Transactions on Pattern Analysis and Machine Intelligence. 28 (12): 1902–1319. doi:10.1109/tpami.2006.255. ISSN 0162-8828.
  7. ^ Papaefthymiou, G.; Kurowicka, D. (2009). "Using Copulas for Modeling Stochastic Dependence in Power System Uncertainty Analysis". IEEE Transactions on Power Systems. 24 (1): 40–49. doi:10.1109/tpwrs.2008.2004728. ISSN 0885-8950.
  8. ^ Brunel, N.J.-B.; Lapuyade-Lahorgue, J.; Pieczynski, W. (2010). "Modeling and Unsupervised Classification of Multivariate Hidden Markov Chains With Copulas". IEEE Transactions on Automatic Control. 55 (2): 338–349. doi:10.1109/tac.2009.2034929. ISSN 0018-9286.
  9. ^ Lai, Chin Diew; Balakrishnan, N. (2009). "Continuous Bivariate Distributions". doi:10.1007/b101765. {{cite journal}}: Cite journal requires |journal= (help)
  10. ^ Durrani, T.S.; Zeng, X. (2007). "Copulas for bivariate probability distributions". Electronics Letters. 43 (4): 248. doi:10.1049/el:20073737. ISSN 0013-5194.
  11. ^ a b Liu, X. (2010). "Copulas of bivariate Rayleigh and log-normal distributions". Electronics Letters. 46 (25): 1669. doi:10.1049/el.2010.2777. ISSN 0013-5194.
  12. ^ a b Zeng, Xuexing; Ren, Jinchang; Wang, Zheng; Marshall, Stephen; Durrani, Tariq (2014). "Copulas for statistical signal processing (Part I): Extensions and generalization". Signal Processing. 94: 691–702. doi:10.1016/j.sigpro.2013.07.009. ISSN 0165-1684.
  13. ^ a b Hachicha, S.; Chaabene, F. (2010). "SAR change detection using Rayleigh copula". Remote Sensing of the Coastal Ocean, Land, and Atmosphere Environment. SPIE. doi:10.1117/12.870023.
  14. ^ "Coded Communication over Fading Channels", Digital Communication over Fading Channels, John Wiley & Sons, Inc., pp. 758–795, 2005, ISBN 978-0-471-71522-1, retrieved 2020-04-06
  15. ^ Das, Saikat; Bhattacharya, Amitabha (2020). "Application of the Mixture of Lognormal Distribution to Represent the First-Order Statistics of Wireless Channels". IEEE Systems Journal: 1–8. doi:10.1109/JSYST.2020.2968409. ISSN 1932-8184.
  16. ^ Alouini, M.-S.; Simon, M.K. (2002). "Dual diversity over correlated log-normal fading channels". IEEE Transactions on Communications. 50 (12): 1946–1959. doi:10.1109/TCOMM.2002.806552. ISSN 0090-6778.
  17. ^ Kolesárová, Anna; Mesiar, Radko; Saminger-Platz, Susanne (2018), Medina, Jesús; Ojeda-Aciego, Manuel; Verdegay, José Luis; Pelta, David A. (eds.), "Generalized Farlie-Gumbel-Morgenstern Copulas", Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Foundations, vol. 853, Springer International Publishing, pp. 244–252, doi:10.1007/978-3-319-91473-2_21, ISBN 978-3-319-91472-5, retrieved 2020-04-06
  18. ^ Sundaresan, Ashok; Varshney, Pramod K. (2011). "Location Estimation of a Random Signal Source Based on Correlated Sensor Observations". IEEE Transactions on Signal Processing. 59 (2): 787–799. doi:10.1109/tsp.2010.2084084. ISSN 1053-587X.
  19. ^ Iyengar, Satish G.; Varshney, Pramod K.; Damarla, Thyagaraju (2011). "A Parametric Copula-Based Framework for Hypothesis Testing Using Heterogeneous Data". IEEE Transactions on Signal Processing. 59 (5): 2308–2319. doi:10.1109/tsp.2011.2105483. ISSN 1053-587X.
  20. ^ Mercier, G.; Moser, G.; Serpico, S.B. (2008). "Conditional Copulas for Change Detection in Heterogeneous Remote Sensing Images". IEEE Transactions on Geoscience and Remote Sensing. 46 (5): 1428–1441. doi:10.1109/tgrs.2008.916476. ISSN 0196-2892.
  21. ^ Sundaresan, Ashok; Varshney, Pramod K.; Rao, Nageswara S. V. (2011). "Copula-Based Fusion of Correlated Decisions". IEEE Transactions on Aerospace and Electronic Systems. 47 (1): 454–471. doi:10.1109/taes.2011.5705686. ISSN 0018-9251.