Jump to content

Discrete fixed-point theorem

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Erel Segal (talk | contribs) at 15:43, 31 March 2020. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In discrete mathematics, a discrete fixed-point theorem is a fixed-point theorem for functions defined on finite sets, typically subsets of the integer grid .

Discrete fixed-point theorems were developed by Iimura,[1] Murota and Tamura,[2] Chen and Deng[3] and others. Yang[4] provides a survey.

Basic concepts

Continuous fixed-point theorems often require a continuous function. Since continuity is not meaningful for functions on discrete sets, it is replaced by conditions such as a direction-preserving function. Such conditions imply that the function does not change too drastically when moving between neighboring points of the integer grid. There are various direction-preservation conditions, depending on whether neighboring points are considered points of a hypercube, of a simplex etc. See the page on direction-preserving function for definitions.

Continuous fixed-point theorems often require a convex set. The analogue of this property for discrete sets is an integrally-convex set.

For functions on discrete sets

We focus on functions , where the domain X is a nonempty subset of the Euclidean space . ch(X) denotes the convex hull of X.

Iimura-Murota-Tamura theorem:[2] If X is a finite integrally-convex subset of , and is a hypercubic direction-preserving (HDP) function, then f has a fixed-point.

Chen-Deng theorem:[3] If X is a finite subset of , and is simplicially direction-preserving (SDP), then f has a fixed-point.

Yang's theorems:

  • [4]: Thm.3.7  If X is a finite hypercubic subset of , with minimum point a and maximum point b, is simplicially gross direction preserving (SGDP), and for any x in X: and , then f has a zero point. This is a discrete analogue of the Poincaré–Miranda theorem.
  • [5][4]: Thm.3.8  If X is a finite integrally-convex subset of , and is such that is SGDP, then f has a fixed-point. This is a discrete analogue of the Brouwer fixed-point theorem.
  • [4]: Thm.3.9  If X = , is bounded and is SGDP, then f has a fixed-point.
  • [4]: Thm.3.10  If X is a finite integrally-convex subset of , a point-to-set mapping, and for all x in X: , and there is a function f such that and is SGDP, then there is a point y in X such that . This is a discrete analogue of the Kakutani fixed-point theorem, and the function f is an analogue of a continuous selection function.

For discontinuous functions on continuous sets

Discrete fixed-point theorems are closely related to fixed-point theorems on discontinuous functions. These, too, use the direction-preservation condition instead of continuity.

Herings-Laan-Talman-Yang fixed-point theorem:[6] Let X be a non-empty polytope in . Let f: XX be a locally gross direction preserving (LGDP) function: at any point x that is not a fixed point of f, the direction of is grossly preserved in some neighborhood of x, in the sense that for any two points y, z in this neighborhood, its inner product is non-negative, i.e.: . Note that every continuous function is LGDP, but an LGDP function may be discontinuous. An LGDP function may even be neither upper nor lower semi-continuous. Then f has a fixed point in X. Moreover, there is a constructive algorithm for approximating this fixed point.

See also

References

  1. ^ Iimura, Takuya (2003-09-01). "A discrete fixed point theorem and its applications". Journal of Mathematical Economics. 39 (7): 725–742. doi:10.1016/S0304-4068(03)00007-7. ISSN 0304-4068.
  2. ^ a b Iimura, Takuya; Murota, Kazuo; Tamura, Akihisa (2005-12-01). "Discrete fixed point theorem reconsidered". Journal of Mathematical Economics. 41 (8): 1030–1036. doi:10.1016/j.jmateco.2005.03.001. ISSN 0304-4068.
  3. ^ a b Chen, Xi; Deng, Xiaotie (2006). Chen, Danny Z.; Lee, D. T. (eds.). "A Simplicial Approach for Discrete Fixed Point Theorems". Computing and Combinatorics. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer: 3–12. doi:10.1007/11809678_3. ISBN 978-3-540-36926-4.
  4. ^ a b c d e Yang, Zaifu (2009-12-01) [2004 (FBA working paper no. 210, Yokohama National University)]. "Discrete fixed point analysis and its applications". Journal of Fixed Point Theory and Applications. 6 (2): 351–371. doi:10.1007/s11784-009-0130-9. ISSN 1661-7746.
  5. ^ Yang, Zaifu (2008-11-01). "On the Solutions of Discrete Nonlinear Complementarity and Related Problems". Mathematics of Operations Research. 33 (4): 976–990. doi:10.1287/moor.1080.0343. ISSN 0364-765X.
  6. ^ Jean-Jacques Herings, P.; van der Laan, Gerard; Talman, Dolf; Yang, Zaifu (2008-01-01). "A fixed point theorem for discontinuous functions". Operations Research Letters. 36 (1): 89–93. doi:10.1016/j.orl.2007.03.008. ISSN 0167-6377.