Jump to content

Switch virtual interface

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Golovini (talk | contribs) at 20:06, 25 March 2020 (Better explanation.). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

A Switch Virtual Interfaces (SVI) represents a logical Layer 3 interface on a switch.

SVI or VLAN interface, is a virtual routed interface that connects a VLAN on the device to the Layer 3 router engine on the same device. Only one VLAN interface can be associated with a VLAN, but you need to configure a VLAN interface for a VLAN only when you want to route between VLANs or to provide IP host connectivity to the device through a virtual routing and forwarding (VRF) instance that is not the management VRF. When you enable VLAN interface creation, a switch creates a VLAN interface for the default VLAN (VLAN 1) to permit remote switch administration.

An SVI cannot be activated unless associated with a physical port.

SVIs are generally configured for a VLAN for the following reasons:

  • Allow traffic to be routed between VLANs by providing a default gateway for the VLAN.
  • Provide fallback bridging (if required for non-routable protocols).
  • Provide Layer 3 IP connectivity to the switch.
  • Support bridging configurations and routing protocol.

SVIs advantages include:

  • Much faster than router-on-a-stick, because everything is hardware-switched and routed.
  • No need for external links from the switch to the router for routing.
  • Not limited to one link. Layer 2 EtherChannels can be used between the switches to get more bandwidth.
  • Latency is much lower, because it does not need to leave the switch

An SVI can also be known as a Routed VLAN Interface (RVI) by some vendors.[1]

References

  1. ^ "Understanding Routed VLAN Interfaces on EX Series Switches". Retrieved 29 May 2013.
  • Data Centre Networking Module (COMH9003) | Cork Institute of Technology