Duplication and elimination matrices
Appearance
In mathematics, especially in linear algebra and matrix theory, the duplication matrix and the elimination matrix are linear transformations used for transforming half-vectorizations of matrices into vectorizations or (respectively) vice versa.
Duplication matrix
The duplication matrix is the unique matrix which, for any symmetric matrix , transforms into :
- .
For the symmetric matrix , this transformation reads
The explicit formula for calculating the duplication matrix for a matrix is:
Where:
- is a unit vector of order having the value in the position and 0 elsewhere;
- is a matrix with 1 in position and zero elsewhere
Elimination matrix
An elimination matrix Ln is a n(n+1)/2 × n2 matrix which, for any n × n matrix A, transforms vec(A) into vech(A):
- Ln vec(A) = vech(A). [1]
For the 2×2 matrix A = , one choice for this transformation is given by
- .
Notes
- ^ Magnus & Neudecker (1980), Definition 3.1
References
- Magnus, Jan R.; Neudecker, Heinz (1980), "The elimination matrix: some lemmas and applications", SIAM Journal on Algebraic and Discrete Methods, 1 (4): 422–449, doi:10.1137/0601049, ISSN 0196-5212.
- Jan R. Magnus and Heinz Neudecker (1988), Matrix Differential Calculus with Applications in Statistics and Econometrics, Wiley. ISBN 0-471-98633-X.
- Jan R. Magnus (1988), Linear Structures, Oxford University Press. ISBN 0-19-520655-X