Jump to content

Symmetric algebra

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by D.Lazard (talk | contribs) at 11:08, 22 March 2020 (Universal properties: rewritten). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In mathematics, the symmetric algebra S(V) (also denoted Sym(V)) on a vector space V over a field K is a commutative algebra over K that contains V, and is, in some sense, minimal for this property. Here, "minimal" means that S(V) satisfies the following universal property: for every linear map f from V to a commutative algebra A, there is a unique algebra homomorphism such that where i is the inclusion of V in S(V).

If B is a basis of V, the symmetric algebra S(V) can be identified, through a canonical isomorphism, to the polynomial ring K[B], where the elements of B are considered as indeterminates. Therefore, the symmetric algebra over V can be viewed as a "coordinate free" polynomial ring over V.

The symmetric algebra S(V) can be built as the quotient of the tensor algebra T(V) by the two-sided ideal generated by the elements of the form

All these definitions and properties extend naturally to the case where V is a module (not necessarily a free one) over a commutative ring.

Construction

It is possible to use the tensor algebra T(V) to describe the symmetric algebra S(V). In fact we pass from the tensor algebra to the symmetric algebra by forcing it to be commutative; if elements of V commute, then tensors in them must, so that we construct the symmetric algebra from the tensor algebra by taking the quotient algebra of T(V) by the ideal generated by the differences of products

for all v and w in V.

In effect, S(V) is the same as the polynomial ring over K in indeterminates that are a basis for V.

Grading

Just as with a polynomial ring, there is a direct sum decomposition of S(V) as a graded algebra, into summands

Sk(V)

which consist of the linear span of the monomials in vectors of V of degree k, for k = 0, 1, 2, ... (with S0(V) = K and S1(V) = V). The K-vector space Sk(V) is the k-th symmetric power of V. (The case k = 2, for example, is the symmetric square and denoted Sym2(V).) It has a universal property with respect to symmetric multilinear operators defined on Vk.

In terms of the tensor algebra grading, Sk(V) is the quotient space of Tk(V) by the subspace generated by all differences of products

and products of these with other algebra elements.

Relationship with symmetric tensors

As the symmetric algebra of a vector space is a quotient of the tensor algebra, an element of the symmetric algebra is not a tensor, and, in particular, is not a symmetric tensor. However, symmetric tensors are strongly related to the symmetric algebra.

A symmetric tensor of degree n is an element of Tn(V) that is invariant under the action of the symmetric group More precisely, given the transformation defines a linear endomorphism of Tn(V). A symmetric tensor is a tensor that is invariant under all these endomorphisms. The symmetric tensors of degree n form a vector subspace (or module) Symn(V) ⊂ Tn(V). The symmetric tensors are the elements of the direct sum which is a graded vector space (or a graded module). It is not an algebra, as the tensor product of two symmetric tensors is not symmetric in general.

Let be the restriction to Symn(V) of the canonical surjection If n! is invertible in the ground field (or ring), then is an isomorphism. This is always the case with a ground field of characteristic zero. The inverse isomorphism is the linear map defined (on products of n vectors) by the symmetrization

The map is not injective if n divides the characteristic; for example is zero in characteristic two. Over a ring of characteristic zero, can be non surjective; for example, over the integers, if x and y are two linearly independent elements of V = S1(V) that are not in 2V, then since

In summary, over a field of characteristic zero, the symmetric tensors and the symmetric algebra form two isomorphic graded vector spaces. They can thus be identified as far as only the vector space structure is concerned, but they cannot be identified as soon as products are involved. Moreover, this isomorphism does not extend to the cases of fields of positive characteristic and rings that do not contain the rational numbers.

Interpretation as polynomials

Given a vector space V, the polynomials on this space are S(V), the symmetric algebra of the dual space: a polynomial on a space evaluates vectors on the space, via the pairing .

For instance, given the plane with a basis {(1,0), (0,1)}, the (homogeneous) linear polynomials on K2 are generated by the coordinate functionals x and y. These coordinates are covectors: given a vector, they evaluate to their coordinate, for instance:

Given monomials of higher degree, these are elements of various symmetric powers, and a general polynomial is an element of the symmetric algebra. Without a choice of basis for the vector space, the same holds, but one has a polynomial algebra without choice of basis.

Conversely, the symmetric algebra of the vector space itself can be interpreted, not as polynomials on the vector space (since one cannot evaluate an element of the symmetric algebra of a vector space against a vector in that space: there is no pairing between S(V) and V), but polynomials in the vectors, such as v2vw + uv.

Symmetric algebra of an affine space

One can analogously construct the symmetric algebra on an affine space (or its dual, which corresponds to polynomials on that affine space). The key difference is that the symmetric algebra of an affine space is not a graded algebra, but a filtered algebra: one can determine the degree of a polynomial on an affine space, but not its homogeneous parts.

For instance, given a linear polynomial on a vector space, one can determine its constant part by evaluating at 0. On an affine space, there is no distinguished point, so one cannot do this (choosing a point turns an affine space into a vector space).

Categorical properties

Given a module V over a commutative ring K, the symmetric algebra S(V) can be defined by the following universal property:

For every linear map f from V to a commutative algebra A, there is a unique algebra homomorphism  such that  where i is the inclusion of V in S(V).

As for every universal property, as soon as a solution exists, this defines uniquely the symmetric algebra, up to a canonical isomorphism. It follows that all properties of the symmetric algebra can be deduced from the universal property. This section is devoted to the main properties that belong to category theory.

The symmetric algebra is a functor from the category of K-modules to the category of K-commutative algebra, since the universal property implies that every module homomorphism can be uniquely extended to an algebra homomorphism

The universal property can be reformulated by saying that the symmetric algebra is a left adjoint to the forgetful functor that sends a commutative algebra to its underlying module.

Analogy with exterior algebra

The Sk are functors comparable to the exterior powers; here, though, the dimension grows with k; it is given by

where n is the dimension of V. This binomial coefficient is the number of n-variable monomials of degree k. In fact, the symmetric algebra and the exterior algebra appear as the isotypical components of the trivial and sign representation of the action of acting on the tensor product (for example over the complex field) [citation needed]

Module analog

The construction of the symmetric algebra generalizes to the symmetric algebra S(M) of a module M over a commutative ring. If M is a free module over the ring R, then its symmetric algebra is isomorphic to the polynomial algebra over R whose indeterminates are a basis of M, just like the symmetric algebra of a vector space. However, if M is not free then S(M) is more complicated.

As a Hopf algebra

The symmetric algebra can be given the structure of a Hopf algebra. The article on the tensor algebra provides highly detailed mechanics showing how this is done.

As a universal enveloping algebra

The symmetric algebra S(V) is the universal enveloping algebra of an abelian Lie algebra, i.e. one in which the Lie bracket is identically 0.

See also

References

  • Bourbaki, Nicolas (1989), Elements of mathematics, Algebra I, Springer-Verlag, ISBN 3-540-64243-9