Jump to content

User:Bazuz/sandbox/Simultaneous localization and mapping

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Bazuz (talk | contribs) at 12:14, 24 February 2020 (Created page with '{{Userspace draft|source=ArticleWizard|date={{Subst:CURRENTMONTHNAME}} {{Subst:CURRENTYEAR}}}} {{Subst:Nul|<==do not change this line, it will set the date autom...'). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
(diff) ← Previous revision | Latest revision (diff) | Newer revision → (diff)
2005 DARPA Grand Challenge winner STANLEY performed SLAM as part of its autonomous driving system
A map generated by a SLAM Robot.

In navigation, robotic mapping and odometry for virtual reality or augmented reality, simultaneous localization and mapping (SLAM) is the computational problem of constructing or updating a map of an unknown environment while simultaneously keeping track of an agent's location within it.[1][2][3][4] While this initially appears to be a chicken-and-egg problem there are several algorithms known for solving it, at least approximately, in tractable time for certain environments. Popular approximate solution methods include the particle filter, extended Kalman filter, Covariance intersection, and GraphSLAM.

SLAM algorithms are tailored to the available resources, hence not aimed at perfection, but at operational compliance. Published approaches are employed in self-driving cars, unmanned aerial vehicles, autonomous underwater vehicles, planetary rovers, newer domestic robots and even inside the human body.[5]

See also

History

A seminal work in SLAM is the research of R.C. Smith and P. Cheeseman on the representation and estimation of spatial uncertainty in 1986.[6][7] Other pioneering work in this field was conducted by the research group of Hugh F. Durrant-Whyte in the early 1990s.[8] which showed that solutions to SLAM exist in the infinite data limit. This finding motivates the search for algorithms which are computationally tractable and approximate the solution.

The self-driving STANLEY and JUNIOR cars, led by Sebastian Thrun, won the DARPA Grand Challenge and came second in the DARPA Urban Challenge in the 2000s, and included SLAM systems, bringing SLAM to worldwide attention. Mass-market SLAM implementations can now be found in consumer robot vacuum cleaners.[9]

Sensors

Localization and mapping as separate problems

The two main approaches

Fitering

Graph-based

The impact of deep learning

Optional: mathematical formulation

Given a series of controls and sensor observations over discrete time steps , the SLAM problem is to compute an estimate of the agent's location and a map of the environment . All quantities are usually probabilistic, so the objective is to compute:

Applying Bayes' rule gives a framework for sequentially updating the location posteriors, given a map and a transition function ,

Similarly the map can be updated sequentially by

Like many inference problems, the solutions to inferring the two variables together can be found, to a local optimum solution, by alternating updates of the two beliefs in a form of EM algorithm.

References

  1. ^ Durrant-Whyte, H.; Bailey, T. (2006). "Simultaneous localization and mapping: part I". IEEE Robotics & Automation Magazine. 13 (2): 99–110. CiteSeerX 10.1.1.135.9810. doi:10.1109/mra.2006.1638022. ISSN 1070-9932.
  2. ^ Bailey, T.; Durrant-Whyte, H. (2006). "Simultaneous localization and mapping (SLAM): part II". IEEE Robotics & Automation Magazine. 13 (3): 108–117. doi:10.1109/mra.2006.1678144. ISSN 1070-9932.
  3. ^ Cadena, Cesar; Carlone, Luca; Carrillo, Henry; Latif, Yasir; Scaramuzza, Davide; Neira, Jose; Reid, Ian; Leonard, John J. (2016). "Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age". IEEE Transactions on Robotics. 32 (6): 1309–1332. arXiv:1606.05830. Bibcode:2016arXiv160605830C. doi:10.1109/tro.2016.2624754. hdl:2440/107554. ISSN 1552-3098.
  4. ^ Perera, Samunda; Barnes, Dr.Nick; Zelinsky, Dr.Alexander (2014), Ikeuchi, Katsushi (ed.), "Exploration: Simultaneous Localization and Mapping (SLAM)", Computer Vision: A Reference Guide, Springer US, pp. 268–275, doi:10.1007/978-0-387-31439-6_280, ISBN 9780387314396
  5. ^ Mountney, P.; et al. (Stoyanov, D.; Davison, A.; Yang, G-Z.) (2006). "Simultaneous Stereoscope Localization and Soft-Tissue Mapping for Minimal Invasive Surgery". MICCAI. Lecture Notes in Computer Science. 1 (Pt 1): 347–354. doi:10.1007/11866565_43. ISBN 978-3-540-44707-8. PMID 17354909. Retrieved 2010-07-30.
  6. ^ Smith, R.C.; Cheeseman, P. (1986). "On the Representation and Estimation of Spatial Uncertainty" (PDF). The International Journal of Robotics Research. 5 (4): 56–68. doi:10.1177/027836498600500404. Retrieved 2008-04-08.
  7. ^ Smith, R.C.; Self, M.; Cheeseman, P. (1986). "Estimating Uncertain Spatial Relationships in Robotics" (PDF). Proceedings of the Second Annual Conference on Uncertainty in Artificial Intelligence. UAI '86. University of Pennsylvania, Philadelphia, PA, USA: Elsevier. pp. 435–461. Archived from the original (PDF) on 2010-07-02. {{cite conference}}: Unknown parameter |booktitle= ignored (|book-title= suggested) (help)
  8. ^ Leonard, J.J.; Durrant-whyte, H.F. (1991). "Simultaneous map building and localization for an autonomous mobile robot". Intelligent Robots and Systems' 91.'Intelligence for Mechanical Systems, Proceedings IROS'91. IEEE/RSJ International Workshop on: 1442–1447. doi:10.1109/IROS.1991.174711. ISBN 978-0-7803-0067-5. Retrieved 2008-04-08.
  9. ^ Knight, Will. "With a Roomba Capable of Navigation, iRobot Eyes Advanced Home Robots". MIT Technology Review. Retrieved 2018-04-25.