Location parameter
In statistics, a location family is a class of probability distributions that is parametrized by a scalar- or vector-valued parameter , which determines the "location" or shift of the distribution. Formally, this means that the probability density functions or probability mass functions in this class have the form
Here, is called the location parameter.
A direct example of location parameter is the parameter of the normal distribution. To see this, note that the p.d.f. (probability density function) of a normal is given by
and defining , so is a location parameter according to the above definition, yields
which is precisely the p.d.f. of a normal .
The above definition indicates, in the one-dimensional case, that if is increased, the probability density or mass function shifts rigidly to the right, maintaining its exact shape.
A location parameter can also be found in families having more than one parameter, such as location–scale families. In this case, the probability density function or probability mass function will be a special case of the more general form
where is the location parameter, θ represents additional parameters, and is a function parametrized on the additional parameters.
Additive noise
An alternative way of thinking of location families is through the concept of additive noise. If is a constant and W is random noise with probability density then has probability density and its distribution is therefore part of a location family.
Proofs
For the continuous univariate case, consider a probability density function , where is a vector of parameters. A location parameter can be added by defining:
it can be proved that is a p.d.f. by verifying if it respects the two conditions and [1]. integrates to 1 because:
now making the variable change and updating the integration interval accordingly yields:
because is a p.d.f. by hypothesis. follows from sharing the same image of , which is a p.d.f. so its image is contained in .
See also
References
- ^ Ross, Sheldon (2010). Introduction to probability models. Amsterdam Boston: Academic Press. ISBN 978-0-12-375686-2. OCLC 444116127.