Jump to content

Logarithmic conformal field theory

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Sylvain Ribault (talk | contribs) at 20:24, 5 January 2020 (2d precision). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In theoretical physics, a logarithmic conformal field theory is a conformal field theory in which the correlators of the basic fields are allowed to be logarithmic at short distance, instead of being powers of the fields' distance. Equivalently, the dilation operator is not diagonalizable.

Just like conformal field theory in general, logarithmic conformal field theory has been particularly well-studied in two dimensions.

Examples of logarithmic conformal field theories include critical percolation.

References

In arbitrary dimensions

  • Hogervorst, Matthijs; Paulos, Miguel; Vichi, Alessandro (2017). "The ABC (in any D) of logarithmic CFT". Journal of High Energy Physics. 2017 (10). Springer Science and Business Media LLC. doi:10.1007/jhep10(2017)201. ISSN 1029-8479. {{cite journal}}: Invalid |ref=harv (help)

In two dimensions