Incomplete Bessel K function/generalized incomplete gamma function
Appearance
Some mathematicians defined this type incomplete-version of Bessel function or this type generalized-version of incomplete gamma function:[1][2][3][4][5]
Properties
One of the advantage of defining this type incomplete-version of Bessel function is that even for example the associated Anger–Weber function defined in Digital Library of Mathematical Functions[6] can related:
recurrence relations
satisfy this recurrence relation:
References
- ^ https://www.rdocumentation.org/packages/DistributionUtils/versions/0.6-0/topics/incompleteBesselK
- ^ https://rdrr.io/cran/DistributionUtils/man/incompleteBesselK.html
- ^ https://core.ac.uk/download/pdf/81935301.pdf
- ^ https://www.researchgate.net/publication/322252136_Generalized_incomplete_gamma_function_and_its_application
- ^ https://pdfs.semanticscholar.org/a9e7/670316180056694f2603aebafa84db950878.pdf
- ^ Paris, R. B. (2010), "Anger-Weber Functions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248.
This article has not been added to any content categories. Please help out by adding categories to it so that it can be listed with similar articles. (December 2019) |