Jump to content

Nearest neighbor value interpolation

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by Headbomb (talk | contribs) at 19:03, 24 November 2019 (predatory journal). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In mathematics applied to computer graphics, nearest neighbor value interpolation is an advanced method of image interpolation.[1] This method uses the pixel value corresponding to the smallest absolute difference when a set of four known value pixels has no mode. Proposed by Olivier Rukundo in 2012 in his PhD dissertation,[2] the first work presented at the fourth International Workshop on Advanced Computational Intelligence,[3] was based only on the pixel value corresponding to the smallest absolute difference[4] to achieve high resolution and visually pleasant image. This approach was since upgraded to deal with a wider class of image interpolation artefacts which reduce the quality of image, and as a result, several future developments have emerged, drawing on various aspects of the pixel value corresponding to the smallest absolute difference.

References

  1. ^ "Getcited". Archived from the original on August 1, 2012. Retrieved May 1, 2012.
  2. ^ "China National Knowledge Infrastructure". Retrieved May 9, 2012.
  3. ^ "IWACI 2011". Archived from the original on August 3, 2012. Retrieved October 19, 2011.
  4. ^ "MENDELEY". Retrieved February 2012. {{cite web}}: Check date values in: |accessdate= (help)