From Wikipedia, the free encyclopedia
In mathematics , a profinite integer is an element of the ring
Z
^
=
lim
←
Z
/
n
Z
=
∏
p
Z
p
{\displaystyle {\widehat {\mathbb {Z} }}=\varprojlim \mathbb {Z} /n\mathbb {Z} =\prod _{p}\mathbb {Z} _{p}}
where
lim
←
Z
/
n
Z
{\displaystyle \varprojlim \mathbb {Z} /n\mathbb {Z} }
indicates the profinite completion of
Z
{\displaystyle \mathbb {Z} }
, the index p runs over all prime numbers , and
Z
p
{\displaystyle \mathbb {Z} _{p}}
is the ring of p -adic integers .
Concretely the profinite integers will be the set of maps
υ
{\displaystyle \upsilon }
such that
υ
(
n
)
∈
Z
/
n
Z
{\displaystyle \upsilon (n)\in \mathbb {Z} /n\mathbb {Z} }
and
m
|
n
⟹
υ
(
m
)
≡
υ
(
n
)
mod
m
{\displaystyle m\ |\ n\implies \upsilon (m)\equiv \upsilon (n){\bmod {m}}}
. Pointwise addition and multiplication makes it a (non-integral) commutative ring. If a sequence of integers converges modulo n for every n then the limit will exist as a profinite integer.
Example: Let
F
¯
q
{\displaystyle {\overline {\mathbf {F} }}_{q}}
be the algebraic closure of a finite field
F
q
{\displaystyle \mathbf {F} _{q}}
of order q . Then
Gal
(
F
¯
q
/
F
q
)
=
Z
^
{\displaystyle \operatorname {Gal} ({\overline {\mathbf {F} }}_{q}/\mathbf {F} _{q})={\widehat {\mathbb {Z} }}}
.[ 1]
A usual (rational) integer is a profinite integer since there is the canonical injection
Z
↪
Z
^
,
n
↦
(
n
mod
1
,
n
mod
2
,
…
)
.
{\displaystyle \mathbb {Z} \hookrightarrow {\widehat {\mathbb {Z} }},\,n\mapsto (n{\bmod {1}},n{\bmod {2}},\dots ).}
The tensor product
Z
^
⊗
Z
Q
{\displaystyle {\widehat {\mathbb {Z} }}\otimes _{\mathbb {Z} }\mathbb {Q} }
is the ring of finite adeles
A
Q
,
f
=
∏
p
′
Q
p
{\displaystyle \mathbf {A} _{\mathbb {Q} ,f}=\prod _{p}{}^{'}\mathbb {Q} _{p}}
of
Q
{\displaystyle \mathbb {Q} }
where the prime ' means restricted product .[ 2]
There is a canonical pairing
Q
/
Z
×
Z
^
→
U
(
1
)
,
(
q
,
a
)
↦
χ
(
q
a
)
{\displaystyle \mathbb {Q} /\mathbb {Z} \times {\widehat {\mathbb {Z} }}\to U(1),\,(q,a)\mapsto \chi (qa)}
[ 3]
where
χ
{\displaystyle \chi }
is the character of
A
Q
,
f
{\displaystyle \mathbf {A} _{\mathbb {Q} ,f}}
induced by
Q
/
Z
→
U
(
1
)
,
α
↦
e
2
π
i
α
{\displaystyle \mathbb {Q} /\mathbb {Z} \to U(1),\,\alpha \mapsto e^{2\pi i\alpha }}
.[ 4] The pairing identifies
Z
^
{\displaystyle {\widehat {\mathbb {Z} }}}
with the Pontryagin dual of
Q
/
Z
{\displaystyle \mathbb {Q} /\mathbb {Z} }
.
See also
Notes
References
External links