Low-energy electron diffraction

In physics, Low Energy Electron Diffraction (or LEED) is a technique used to probe matter.
Electrons emitted from a hot filament are accelerated in a tube to a certain energy. They impact on a sample at a defined incidence angle. The electrons are back scattered, depending on whether Bragg diffraction occurs or not.
LEED is used in crystal growth to probe the properties of the crystal, such as crystallinity and morphology, by reading the resulting patterns on the fluorescent screen.
LEED can be compared to RHEED, or Reflection High Energy Electron Diffraction.
History
Davisson and Germer's discovery of electron diffraction
The development of electron diffraction was closely linked to the progress of quantum mechanics and atomic physics. The possibility of electron diffraction was proposed by Louis de Broglie in 1924. The theory asserted that all particles present wave-particle duality. On the experimental side, a laboratory accident at Bell Laboratories, which resulted in the creation of Ni(111) microfacets and led to the observation of electron diffraction, prefaced a series of experiments to establish evidence of de Broglie's theory. Davisson and Germer published notes of their electron diffraction experiment result in Nature and in Physical Review in 1927. Just one month after Davisson and Germer's work appeared on Nature, Thompson and Reid published their electron diffraction work with higher kinetic energy (thousand times higher than the energy used by Davisson and Germer) in same journal. Those experiments revealed the wave property of electron and opened up an era of electron diffraction study.
It takes 40 years to become a tool for structure determination
Thompson's High-Energy Electron Diffraction(HEED) only took a couple of years to mature as a tool that can be used for bond length determination, and it was further developed into Electron Microscopy techniques. The main reasons for the slowness of Low Energy Electron Diffraction (LEED) development were
1, Low energy electrons are surface sensitive and therefore LEED needs a clean surface structure. Ultra-Vacuum technology and the methods for preparing the surface of a crystal took many years to develop.
2, The LEED experimental data could not be quantitatively described by the kinematic theory which was used in the interpretation of X-ray data. A more sophisticated theory with multiple scattering was developed in the 1960's.
LEED instrumentation
Usually, LEED experiments are performed in an Ultra high vacuum environment and are often supplemented by Auger Electron Spectroscopy for identifying surface constituents. A ion Gun is often used for surface cleaning. A LEED instrument consists usually of a Electron Gun, a Detector System and Data acquisition system.
Electrons are emitted by a cathode filament which is at a negative potential with respect to the sample. They are accelerated and focused into a beam by a series of electrodes that serve as electron lenses.
Detector system
A LEED detector usually contains three or four hemispherical concentric grids and a Phosphor screen or other position sensitive detector. The grids are used for screening out the inelastically scattered electrons. Most new LEED systems use Reverse View scheme, which has a minimized electron gun and the pattern is viewed through a transmission screen and a viewport. Recently, a new digitalized position sensitive detector called a delay-line detector with better dynamic range and resolution has been developed.
Data acquisition
A modern data acquisition system usually contains a CCD/CMOS camera pointed to the screen for diffraction pattern visualization and a computer for data recording and further analysis.
Theory of LEED
Kinematic Theory: Single Scattering
The basic assumption in kinematic theory is that electrons are scattered only once by surface atoms. Kinematic theory works pretty well in the interpretation of X-Ray diffraction. In the case of LEED, multiple scattering is very important. However, kinematic theory can still provide much information about a surface structure. Since LEED is a surface sensitive technique, the diffracted wave vectors satisfy two-dimensional Bragg conditions and can form interference patterns. Basically, the LEED pattern is a two-dimensional reciprocal lattice of the ordered surface projected onto a two-dimensional real plane. The position of the LEED spots can be determined using an Ewald construction.
Dynamical Theory: Multiple Scattering
From kinematic theory, the surface unit cell size and symmetry can be determined, but not the exact positions and distances of the surface atoms. Those parameters can only be determined using dynamical LEED theory. Two main features of the dynamical approach are.
1, The ion-core scattering of an atom is strong and complicated which is considered weak in kinematic approach.
2, Multiple electron scattering from different atoms in the surface is considered. The dynamical theory treats the scattering between atoms in same plane first, then deals with the scattering between planes for a certain depth of penetration.
The common routine for a structure determination by LEED is first to take intensity versus incident energy curves for the spots on the LEED pattern and then make a comparison with the intensity versus energy curves from the dynamical theory. This is a trial-and-error procedure. A presumed structure is prepared as the input parameters for the dynamical calculation, and the structure is fine tuned until a minimum R-factor is obtained. The R-factor is the quality criterion of the presumed structure. The most commonly used R-factor is the Pendry R-factor. For this R-factor, a value smaller than 0.2 is considered good, an R-factor larger than 0.5 might not be a correct structure.
See Also
List of surface analysis methods
X-ray diffraction
Reference
[1] M.A. Van Hove, W.H. Weinberg and C.-M. Chan, Low-Energy Electron Diffraction, Springer Verlag, 1986.
[2] J.B. Pendry, Low Energy Electron Diffraction, Academic Press, 1974.
[3] P. Goodman (General Editor), Fifty Years of Electron Diffraction, D. Reidel Publishing, 1981
[4] D. Human etal., Low energy electron diffraction using an electronic delay-line detector, Rev. Scif. Inst. 77 023302 (2006)
External Links
[1] Surface/Interface Theory Program at Lawrence Berkeley National Laboratory
[2] LEED Surface Structure Group at Stony Brook.
[3] Group of Prof. Wolfgang Moritz at Ludwig-Maximilians-Universität (LMU) Munich.
[4] Group of Prof. Renee Diehl at Pennsylvania State University.