Jump to content

Multivariate optical computing

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by 72.2.33.242 (talk) at 05:36, 1 October 2019 (Bibliography of Multivariate Optical Computing). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Multivariate Optical Computing, also known as Molecular Factor Computing, is an approach to the development of compressed sensing spectroscopic instruments, particularly for industrial applications such as process analytical support. "Conventional" spectroscopic methods often employ multivariate and chemometric methods, such as multivariate calibration, pattern recognition, and classification, to extract analytical information (including concentration) from data collected at many different wavelengths. Multivariate optical computing uses an optical computer to analyze the data as it is collected. The goal of this approach is to produce instruments which are simple and rugged, yet retain the benefits of multivariate techniques for the accuracy and precision of the result.

An instrument which implements this approach may be described as a multivariate optical computer. Since it describes an approach, rather than any specific wavelength range, multivariate optical computers may be built using a variety of different instruments (including Fourier Transform Infrared (FTIR)[1] and Raman[2]).

The "software" in multivariate optical computing is encoded directly into an optical element spectral calculation engine such as an interference filter based multivariate optical element (MOE), holographic grating, liquid crystal tunable filter, spatial light modulator (SLM), or digital micromirror device (DMD) and is specific to the particular application. The optical pattern for the spectral calculation engine is designed for the specific purpose of measuring the magnitude of that multi-wavelength pattern in the spectrum of a sample, without actually measuring a spectrum.[3]

Multivariate Optical Computing allows instruments to be made with the mathematics of pattern recognition designed directly into an optical computer, which extracts information from light without recording a spectrum. This makes it possible to achieve the speed, dependability, and ruggedness necessary for real time, in-line process control instruments.

Multivariate Optical Computing encodes an analog optical regression vector of a transmission function for an optical element. Light which emanates from a sample contains the spectral information of that sample, whether the spectrum is discovered or not. As light passes from a sample through the element, the normalized intensity, which is detected by a broad band detector, is proportional to the dot product of the regression vector with that spectrum, i.e. is proportional to the concentration of the analyte for which the regression vector was designed. The quality of the analysis is then equal to the quality of the regression vector which is encoded. If the resolution of the regression vector is encoded to the resolution of the laboratory instrument from which that regression vector was designed and the resolution of the detector is equivalent, then the measurement made by Multivariate Optical Computing will be equivalent to that laboratory instrument by conventional means. The technique is making headway in a niche market for harsh environment detection. Specifically the technique has been adopted for use in the oil industry for detection of hydrocarbon composition in oil wells and pipeline monitoring. In such situations, laboratory quality measurements are necessary, but in harsh environments.[4]

History

Although the concept of using a single optical element for analyte regression and detection was suggested in 1986,[5] the first full MOC concept device was published in 1997 from the Myrick group at the University of South Carolina,[6] with a subsequent demonstration in 2001.[7] The technique has received much recognition in the optics industry as a new method to perform optical analysis with advantages for harsh environment sensing.[4][7][8][9][10] The technique has been applied to Raman spectroscopy,[2][11][12] fluorescence spectroscopy,[12][13][14][15][16][17][18][19] absorbance spectroscopy in the UV-Vis,[7][20] NIR[21][22][23] and MIR,[24][25] microscopy,[26] reflectance spectroscopy[27] and hyperspectral imaging.[11][20][22][23][27][28][29] In the years since first demonstration, applications have been demonstrated for defence,[30] forensics,[31] monitoring of chemical reactions,[6][32] environmental monitoring,[8][33][34] recycling,[21][35] food and drug,[28][36] medical and life sciences,[14][15][16][17][18][19] and the petroleum industry.[4][10][25][32][37][38][39][40][41][42] The first published demonstration for use of MOC in the harsh environments, was 2012 with a laboratory study with temperatures from 150F to 350F and pressures from 3000psi to 20,000psi,[10] followed in 2013 with field trials in oil wells.[42]

References

  1. ^ 1 Myrick, Michael L.; Haibach, Frederick G. (2004-04-01), "Precision in Multivariate Optical Computing", Applied Optics, 43 (10): 2130–2140, Bibcode:2004ApOpt..43.2130H, doi:10.1364/AO.43.002130, PMID 15074423
  2. ^ a b Nelson, MP; Aust, JF; Dobrowolski, JA; Verly, PG; Myrick, Michael L. (1998), "Multivariate optical computation for predictive spectroscopy", Analytical Chemistry, 70 (1): 73–82, doi:10.1021/ac970791w, PMID 21644602
  3. ^ Vornehm, J.E. Jr; Dong, A.J.; Boyd, R.W.; et al. (2014). "Multiple-output multivariate optical computing for spectrum recognition". Optics Express. 22 (21): 25005–14. Bibcode:2014OExpr..2225005V. doi:10.1364/OE.22.025005. PMID 25401534.
  4. ^ a b c Jones, Christopher M.; et al. (2014-08-30), "Multivariate Optical Computing enables Accurate Harsh Environment Sensing for the Oil and Gas Industry", Laser Focus World, 50 (8): 27–31, retrieved 2014-08-30
  5. ^ Bialkowski, S (1986). "Species discrimination and quantitative estimation using incoherent linear optical signal processing of emission signals". Analytical Chemistry. 58 (12): 2561–2563. doi:10.1021/ac00125a043.
  6. ^ a b 5 Dobrowolski, J.A., Verly, P.G., Myrick, M.L. et al. 1997. Design of thin-films for the monitoring of chemical reactions. In Proc. SPIE 3133, Optical Thin Films V: New Developments, ed. R.L. Hall, 38–45. San Diego, California, 1 October. doi:10.1117/12.290200.
  7. ^ a b c Soyemi, O.; Eastwood, D.; Zhang, L.; et al. (2001). "Design and Testing of a Multivariate Optical Element: The First Demonstration of Multivariate Optical Computing for Predictive Spectroscopy". Analytical Chemistry. 73 (6): 1069–1079. doi:10.1021/ac0012896.
  8. ^ a b Eastwood, D., Soyemi, O., Karunamuni, J. et al. 2001. Field applications of stand-off sensing using visible/NIR multivariate optical computing. In Proc. SPIE 4199, Water, Ground, and Air Pollution Monitoring and Remediation, eds. T. Vo-Dinh and R.L. Spellicy, 105–114. Boston, Massachusetts, 14 February. doi:10.1117/12.417366.
  9. ^ Myrick, M.L. (2002). "Multivariate optical elements simplify spectroscopy". Laser Focus World. 38 (3): 91–94.
  10. ^ a b c Jones, C.M., Freese, B., Pelletier, M. et al. 2012. Laboratory Quality Optical Analysis in Harsh Environments. Presented at the SPE Kuwait International Petroleum Conference and Exhibition,
  11. ^ a b Davis, B.M.; Hemphill, A.J.; Maltaş, D.C.; et al. (2011). "Multivariate Hyperspectral Raman Imaging Using Compressive Detection". Analytical Chemistry. 83 (13): 5086–5092. doi:10.1021/ac103259v.
  12. ^ a b Smith, Z.J.; Strombom, S.; Wachsmann-Hogiu, S. (2011). "Multivariate optical computing using a digital micromirror device for fluorescence and Raman spectroscopy". Optics Express. 19 (18): 16950–16962. Bibcode:2011OExpr..1916950S. doi:10.1364/OE.19.016950.
  13. ^ Priore, R.J. and Swanstrom, J.A. 2015. Multivariate optical computing for fluorochrome discrimination. In Proc. SPIE 9332, Optical Diagnostics and Sensing XV: Toward Point-of-Care Diagnostics, 933212, ed. G.L. Cotes. San Francisco, California, 9 March. doi:10.1117/12.2080996.
  14. ^ a b Priore, R.J. and Swanstrom, J.A. 2014. Multivariate optical element platform for compressed detection of fluorescence markers. In Proc. SPIE 9101, Next-Generation Spectroscopic Technologies VII, 91010E, eds. M.A. Druy and R.A. Crocombe. Baltimore, Maryland, 21 May. doi:10.1117/12.2053570.
  15. ^ a b Priore, R.J. (2013). "OPTICS FOR BIOPHOTONICS: Multivariate optical elements beat bandpass filters in fluorescence analysis". Laser Focus World. 49 (6): 49–52.
  16. ^ a b Swanstrom, J.A.; Bruckman, L.S; Pearl, M.R.; et al. (2013). "Taxonomic Classification of Phytoplankton with Multivariate Optical Computing, Part I: Design and Theoretical Performance of Multivariate Optical Elements". Applied Spectroscopy. 67 (6): 220–229. Bibcode:2013ApSpe..67..620S. doi:10.1366/12-06783.
  17. ^ a b Swanstrom, J.A.; Bruckman, L.S.; Pearl, M.R.; et al. (2013). "Taxonomic Classification of Phytoplankton with Multivariate Optical Computing, Part II: Design and Experimental Protocol of a Shipboard Fluorescence Imaging Photometer". Applied Spectroscopy. 67 (6): 230–239. Bibcode:2013ApSpe..67..630S. doi:10.1366/12-06784.
  18. ^ a b Pearl, M.R.; Swanstrom, J.A.; Bruckman, L.S.; et al. (2013). "Taxonomic Classification of Phytoplankton with Multivariate Optical Computing, Part III: Demonstration". Applied Spectroscopy. 67 (6): 240–247. Bibcode:2013ApSpe..67..640P. doi:10.1366/12-06785.
  19. ^ a b Qu, J.Y.; Chang, H.; Xiong, S. (2002). "Fluorescence spectral imaging for characterization of tissue based on multivariate statistical analysis". Journal of the Optical Society of America A. 19 (9): 1823–1831. Bibcode:2002JOSAA..19.1823Q. doi:10.1364/JOSAA.19.001823.
  20. ^ a b Priore, R.J., Greer, A.E., Haibach, F.G. et al. 2003. Novel Imaging Systems: Multivariate Optical Computing in the UV-VIS. In Proc., IS&T's NIP19: International Conference on Digital Printing Technologies, Vol. 19, 906–910. New Orleans, Louisiana.
  21. ^ a b Pruett, E. 2015. Latest developments in Texas Instruments DLP near-infrared spectrometers enable the next generation of embedded compact, portable systems. In Proc. SPIE 9482, Next-Generation Spectroscopic Technologies VIII, 94820C, eds. M.A. Druy, R.A. Crocombe, and D.P. Bannon. Baltimore, Maryland, 3 June. doi:10.1117/12.2177430
  22. ^ a b Myrick, M.L, Soyemi, O.O., Haibach, F.G. et al. 2002. Application of multivariate optical computing to near-infrared imaging. In Proc. SPIE 4577, Vibrational Spectroscopy-based Sensor Systems, eds. S.D. Christesen and A.J. Sedlacek III, 148–157. Boston, Massachusetts, 13 February. doi:10.1117/12.455732.
  23. ^ a b Myrick, M.L., Soyemi, O.O., Schiza, M.V. et al. 2002. Application of multivariate optical computing to simple near-infrared point measurements. In Proc. SPIE 4574, Instrumentation for Air Pollution and Global Atmospheric Monitoring, eds. J.O. Jensen and R.L. Spellicy, 208–215. Boston, Massachusetts, 12 February. doi:10.1117/12.455161.
  24. ^ Coates, J (2005). "A New Approach to Near- and Mid-Infrared Process Analysis – Encoded photometric infrared technology has the ability to address the demands of modern process applications, including those of the PAT initiative". Spectroscopy. 20 (1): 32–35.
  25. ^ a b Jones, C., Gao, L., Perkins, D. et al. 2013. Field Test of the Integrated Computational Elements: A New Optical Sensor for Downhole Fluid Analysis. Presented at the SPWLA 54th Annual Logging Symposium, New Orleans, Louisiana, 22–26 June. SPWLA-2013-YY.
  26. ^ Nelson, M.P., Aust, J.F., Dobrowolski, J.A. et al. 1998. Multivariate optical computation for predictive spectroscopy. In Proc. SPIE 3261, Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing V, eds. C.J. Cogswell, J-A. Conchello, J.M. Lerner, T.T. Lu, and T. Wilson, 232–243. San Jose, California, 9 June. doi:10.1117/12.310558.
  27. ^ a b Boysworth, M.K.; Banerija, S.; Wilson, D.M.; et al. (2007). "Generalization of multivariate optical computations as a method for improving the speed and precision of spectroscopic analyses". Journal of Chemometrics. 22 (6): 355–365. doi:10.1002/cem.1132.
  28. ^ a b Mendendorp, J.; Lodder, R.A. (2005). "Applications of integrated sensing and processing in spectroscopic imaging and sensing". Journal of Chemometrics. 19 (10): 533–542. CiteSeerX 10.1.1.141.4078. doi:10.1002/cem.961.
  29. ^ Priore, R.J.; Haibach, F.G.; Schiza, M.V.; et al. (2004). "A Miniature Stereo Spectral Imaging System for Multivariate Optical Computing". Applied Spectroscopy. 58 (7): 870–873. Bibcode:2004ApSpe..58..870P. doi:10.1366/0003702041389418.
  30. ^ Soyemi, O.O., Zhang, L., Eastwood, D. et al. 2001. A Simple Optical Computing Device for Chemical Analysis. In Proc. SPIE 4284, Functional Integration of Opto-Electro-Mechanical Devices and Systems, eds. M.R. Descour and J.T. Rantala, 17–28. San Jose, California, 15 May. doi:10.1117/12.426870.
  31. ^ Myrick, M.L.; Soyemi, O.; Li, H.; et al. (2001). "Spectral tolerance determination for multivariate optical element design". Fresenius' Journal of Analytical Chemistry. 369 (3–4): 351–355. doi:10.1007/s002160000642.
  32. ^ a b Fratkin, M. 2008. On-Line Oil Quality Sensors. Presented at the CTMA Symposium, Baltimore, Maryland, 7–9 April.
  33. ^ Soyemi, O.O., Gemperline, P.J., Zhang, L. et al. 2001. Novel Filter Design Algorithm for Multivariate Optical Computing. In Proc. SPIE 4205, Advanced Environmental and Chemical Sensing Technology, eds. T. Vo-Dinh and S. Buettgenbach, 288–299. Boston, Massachusetts, 26 February. doi:10.1117/12.417462.
  34. ^ Myrick, M.L. 1999. New approaches to implementing predictive spectroscopy. In Proc. SPIE 3854, Pattern Recognition, Chemometrics, and Imaging for Optical Environmental Monitoring, eds. K.J. Siddiqui and D. Eastwood, 98–102. Boston, Massachusetts, 16 December. doi:10.1117/12.372890.
  35. ^ Pruett, E. 2015. Techniques and applications of programmable spectral pattern coding in Texas Instruments DLP spectroscopy. In Proc. SPIE 9376, Emerging Digital Micromirror Device Based Systems and Applications VII, 93760H, eds. M.R. Douglass, P.S. King, and B.L. Lee. San Francisco, California, 10 March.
  36. ^ Dai, B.; Urbas, A.; Douglas, C.C.; et al. (2007). "Molecular Factor Computing for Predictive Spectroscopy". Pharmaceutical Research. 24 (8): 1441–1449. CiteSeerX 10.1.1.141.5296. doi:10.1007/s11095-007-9260-1. PMID 17380265.
  37. ^ Jones, C.M., van Zuilekom, T., and Iskander, F. 2016. How Accurate Is Enhanced Optical Fluid Analysis Compared to Lab PVT Measurements? Presented at the SPWLA 57th Annual Symposium, Reykjavik, Iceland, 25–29 June. SPWLA-2016-JJJ.
  38. ^ Jones, C.M., He, T., Dai, B. et al. 2015. Measurement and Use of Formation Fluid, Saturate, and Aromatic Content, with Wireline Formation Testers. Presented at the SPWLA 56th Annual Symposium, Long Beach, California, 18–22 July. SPWLA-2015-EE.
  39. ^ Hunt, I. 2014. ICE Core Technology in East Africa. Pipeline November (209): 142–145.
  40. ^ Chemali, R.; Semac, W.; Balliet, R.; et al. (2014). "Formation-Evaluation Challenges and Opportunities in Deepwater". Petrophysics. 55 (2): 124–135.
  41. ^ Jones, C. 2014. Optical Sensors Analyze Fluids In Situ. The American Oil and Gas Reporter September: 117–123.
  42. ^ a b Eriksen, K.O. (Statoil), Jones, C.M., Freese, R. et al. 2013. Field Tests of a New Optical Sensor Based on Integrated Computational. Presented at SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, 30 September–2 October. SPE-166415-MS.

Bibliography of Multivariate Optical Computing

  • Piazza, R., Vieira, A., Sacorague, L. A., Jones, C., Dai, B., Price, J., … Aguiar, H. (2019, September 23). A New Optical Sensor Configuration Enables First Time Use of the Mid-Infrared Optical Wavelength Region for Chemical Analysis During Formation Tester Logging Operations. Society of Petroleum Engineers. doi:10.2118/195858-MS
  • Piazza, R., Vieira, A., Sacorague, L. A., Jones, C., Dai, B., Pearl, M., & Aguiar, H. (2019, June 15). Direct MID-IR Optical Measurement of Synthetic Drilling Fluid Filtrate Contamination During Formation-Tester Pumpouts. Society of Petrophysicists and Well-Log Analysts.
  • Piazza, R., Vieira, A., Sacorague, L. A., Jones, C., Dai, B., Pearl, M., & Aguiar, H. (2019, June 15). Real-Time Downhole MID-IR Measurement of Carbon Dioxide Content. Society of Petrophysicists and Well-Log Analysts.
  • K. Viherkanto, U. Kantojärvi, and B. Harnisch "Imaging spectral signature instrument airborne campaign results", Proc. SPIE 10565, International Conference on Space Optics — ICSO 2010, 105655I (5 September 2019); https://doi.org/10.1117/12.2552582
  • J. Lu et al., "A Programmable Optical Filter With Arbitrary Transmittance for Fast Spectroscopic Imaging and Spectral Data Post-Processing," in IEEE Access, vol. 7, pp. 119294-119308, 2019. doi: 10.1109/ACCESS.2019.2937095
  • Cebeci, D.; Mankani, B.R.; Ben-Amotz, D. Recent Trends in Compressive Raman Spectroscopy Using DMD-Based Binary Detection. J. Imaging 2019, 5, 1.
  • Matthew P. Nelson, Shawna K. Tazik, and Patrick J. Treado "Real-time, reconfigurable, handheld molecular chemical imaging sensing for standoff detection of threats", Proc. SPIE 11010, Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XX, 1101005 (17 May 2019); https://doi.org/10.1117/12.2519050
  • Jones, C.M.; Dai, B.; Price, J.; Li, J.; Pearl, M.; Soltmann, B.; Myrick, M.L. A New Multivariate Optical Computing Microelement and Miniature Sensor for Spectroscopic Chemical Sensing in Harsh Environments: Design, Fabrication, and Testing. Sensors 2019, 19, 701. doi.org/10.3390/s19030701
  • Dai, B., Jones, C.M., Pearl, M., Pelletier, M., Myrick, M., 2018. Hydrogen Sulfide Gas Detection via Multivariate Optical Computing. Sensors, 22 June 2018, doi:10.3390/s18072006 unflagged free DOI (link).
  • Matthew P. Nelson, Shawna K. Tazik, Patrick J. Treado, Tiancheng Zhi, Srinivasa Narasimhan, Bernardo Pires, and Martial Hebert "Real-time, short-wave, infrared hyperspectral conforming imaging sensor for the detection of threat materials", Proc. SPIE 10657, Next-Generation Spectroscopic Technologies XI, 106570U (14 May 2018); https://doi.org/10.1117/12.2305066
  • Li, J., Stark, D., James, P., Dai, B., Jones, C.M. 2018. An Adaptable Optical Sensor for Chemometric Analysis. THE PROCEEDINGS of the 63rd Technical Symposium of the Analysis Division of the International Society of Automation., Galveston, TX, April 23. ISA.
  • P Réfrégier, C Scotté, HB de Aguiar, H Rigneault "Assessment of Compressive Raman versus Hyperspectral Raman for Microcalcification Chemical Imaging" Anal. Chem. 2018, 90 (12) PP 7197-7203. https://doi.org/10.1021/acs.analchem.7b05303
  • Corcoran, T.C. 2017. Compressive Detection of Highly Overlapped Spectra Using Walsh–Hadamard-Based Filter Functions. Applied Spectroscopy, 28 November 2017, doi:10.1177/0003702817738023.
  • Rekully, C.M., Faulkner, S.T., Lachenmyer, E.M. et al. 2017. Fluorescence Excitation Spectroscopy for Phytoplankton Species Classification Using an All-Pairs Method: Characterization of a System with Unexpectedly Low Rank. Applied Spectroscopy, 15 November 2017, doi:10.1177/0003702817741278.
  • Owen G. Rehrauer1, Vu C. Dinh2, Bharat R. Mankani1, Gregery T. Buzzard3, Bradley J. Lucier4, Dor Ben-Amotz1 (November 7, 2017) "Binary Complementary Filters for Compressive Raman Spectroscopy". Applied Spectroscopy V72,PP69-78. https://doi.org/10.1177/0003702817732324
  • Carpenter, C. (2017, August 1). In-Situ Fluid-Composition Analyses Improve Reservoir Management. Society of Petroleum Engineers. doi:10.2118/0817-0053-JPT
  • Karkamkar, P. and Gutierrez-Osuna, R. 2017. Optical computation of chemometrics projections using a digital micromirror device. .Presented at the ISOCS/IEEE International Symposium on Olfaction and Electronic Nose (ISOEN), Montreal, Quebec, Canada, 28–31 May. doi:10.1109/ISOEN.2017.7968871.
  • Matthew P. Nelson, Shawna K. Tazik, and Patrick J. Treado "Real-time, reconfigurable, handheld molecular chemical imaging sensing for standoff detection of threats", Proc. SPIE 11010, Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XX, 1101005 (17 May 2019); https://doi.org/10.1117/12.2519050
  • Matthew P. Nelson, Shawna K. Tazik, Arjun S. Bangalore, Patrick J. Treado, Ethan Klem, and Dorota Temple "Performance evaluation and modeling of a conformal filter (CF) based real-time standoff hazardous material detection sensor", Proc. SPIE 10210, Next-Generation Spectroscopic Technologies X, 102100L (3 May 2017); https://doi.org/10.1117/12.2262720
  • Ahmed, K., Hassan, F., Taqi, F. et al. 2016. Real-Time Downhole Fluid Analysis and Sampling with a New Optical Composition Analysis Sensor: A Case Study from Kuwait Heavy Oil Formation. Presented at the SPE Heavy Oil Conference and Exhibition, Kuwait City, Kuwait, 6–8 December. SPE-184112-MS. doi:10.2118/184112-MS.
  • Gerardo Gamez, "Compressed sensing in spectroscopy for chemical analysis". Journal of Analytical Atomic Spectrometry (2016) 31 (11), PP 2165-2174. DOI:10.1039/C6JA00262E
  • Suo, J., Wang, Y., Bian, L. et al. 2016. Single-pixel hyperspectral imaging. In Proc. SPIE 10020, Optoelectronic Imaging and Multimedia Technology IV, 100200B, Beijing, China, 31 October. doi:10.1117/12.2247809.
  • Hursan, G., Ma, S.M., Soleiman, W. et al. 2016. New Wireline, In-Situ Downhole Fluid Compositional Analyses to Enhance Reservoir Characterization and Management. Presented at the SPE Annual Technical Conference and Exhibition, Dubai, UAE, 26–28 September. SPE-181526-MS. doi:10.2118/181526-MS.
  • Jones, C.M., van Zuilekom, T., and Iskander, F. 2016. How Accurate Is Enhanced Optical Fluid Analysis Compared to Lab PVT Measurements? Presented at the SPWLA 57th Annual Symposium, Reykjavik, Iceland, 25–29 June. SPWLA-2016-JJJ.
  • Matthew P. Nelson, Lei Shi, Lucas Zbur, Ryan J. Priore, and Patrick J. Treado "Real-time short-wave infrared hyperspectral conformal imaging sensor for the detection of threat materials", Proc. SPIE 9824, Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XVII, 982416 (12 May 2016); https://doi.org/10.1117/12.2223816
  • Priore, R.J. and Jacksen, N. 2016. Spectral imaging of chemical compounds using multivariate optically enhanced filters integrated with InGaAs VGA cameras. In Proc. SPIE 9284, CBRNE Sensing XVll, 98240P, ed. A.W. Fountain, Baltimore, Maryland, 17 April. doi:10.1117/12.2222784.
  • Ryan Priore, John Dougherty, Omer Cohen, Leonid Bikov, Itay Hirsh, "Design of a miniature SWIR hyperspectral snapshot imager utilizing multivariate optical elements," Proc. SPIE 9992, Emerging Imaging and Sensing Technologies, 999205 (25 October 2016); doi:10.1117/12.2254369; https://doi.org/10.1117/12.2254369
  • Liu, Yan; Cai, Wensheng, Shao, Xueguang; (December 15, 2015), Designing classification filters for integrated sensing and processing using optimal discriminant vectors. Chemometric and Intelligent Laboratory Systems. Elsevier. PP 22-27, https://doi.org/10.1016/j.chemolab.2015.09.015
  • Jones, C.M., He, T., Dai, B. et al. 2015. Measurement and Use of Formation Fluid, Saturate, and Aromatic Content, with Wireline Formation Testers. Presented at the SPWLA 56th Annual Symposium, Long Beach, California, 18–22 July. SPWLA-2015-EE.
  • Li, X., Xu, Z., Cai, W. et al. 2015. Filter design for molecular factor computing using wavelet functions. Analytica Chimica Acta 880 (June): 26–31. doi:10.1016/j.aca.2015.04.026.
  • Priore, R.J. and Swanstrom, J.A. 2015. Multivariate optical computing for fluorochrome discrimination. In Proc. SPIE 9332, Optical Diagnostics and Sensing XV: Toward Point-of-Care Diagnostics, 933212, ed. G.L. Cotes. San Francisco, California, 9 March. doi:10.1117/12.2080996.
  • Pruett, E. 2015. Techniques and applications of programmable spectral pattern coding in Texas Instruments DLP spectroscopy. In Proc. SPIE 9376, Emerging Digital Micromirror Device Based Systems and Applications VII, 93760H, eds. M.R. Douglass, P.S. King, and B.L. Lee. San Francisco, California, 10 March. doi:10.1117/12.2083863.
  • Pruett, E. 2015. Latest developments in Texas Instruments DLP near-infrared spectrometers enable the next generation of embedded compact, portable systems. In Proc. SPIE 9482, Next-Generation Spectroscopic Technologies VIII, 94820C, eds. M.A. Druy, R.A. Crocombe, and D.P. Bannon. Baltimore, Maryland, 3 June. doi:10.1117/12.2177430.
  • Nayak, A.B., Price, J.M., Dai, B. et al. Characterization of ion-assisted induced absorption in A-Si thin-films used for multivariate optical computing. In Proc. SPIE 9482, Next-Generation Spectroscopic Technologies VIII, 94820A, eds. M.A. Druy, R.A. Crocombe, and D.P. Bannon. Baltimore, Maryland, 3 June. doi:10.1117/12.2177125.
  • Cebeci-Maltaş, D., McCann, R., Wang, P. et al. "Pharmaceutical Application of Fast Raman Hyperspectral Imaging with Compressive Detection Strategy" J Pharm Innov (2014) 9: 1. https://doi.org/10.1007/s12247-013-9168-8
  • Vornehm, J.E. Jr; Dong, A.J.; Boyd, R.W.; et al. (2014). "Multiple-output multivariate optical computing for spectrum recognition". Optics Express. 22 (21): 25005–14. Bibcode:2014OExpr..2225005V. doi:10.1364/OE.22.025005. PMID 25401534.
  • Hunt, I. 2014. ICE Core Technology in East Africa. Pipeline November (209): 142-145.
  • Chemali, R.; Semac, W.; Balliet, R.; et al. (2014). "Formation-Evaluation Challenges and Opportunities in Deepwater". Petrophysics. 55 (2): 124–135.
  • Jones, C. 2014. Optical Sensors Analyze Fluids In Situ. The American Oil and Gas Reporter September: 117–123.
  • Jones, C.M.; Freese, R.; Perkins, D.L.; et al. (2014). "Photonics Applied: Energy: Multivariate optical computing enables accurate harsh-environment sensing for the oil and gas industry". Laser Focus World. 50 (8): 27–31.
  • Priore, R.J. and Swanstrom, J.A. 2014. Multivariate optical element platform for compressed detection of fluorescence markers. In Proc. SPIE 9101, Next-Generation Spectroscopic Technologies VII, 91010E, eds. M.A. Druy and R.A. Crocombe. Baltimore, Maryland, 21 May. doi:10.1117/12.2053570.
  • Priore, R.J. (2013). "OPTICS FOR BIOPHOTONICS: Multivariate optical elements beat bandpass filters in fluorescence analysis". Laser Focus World. 49 (6): 49–52.
  • Liming Wang, David Carlson, Miguel Dias Rodrigues, David Wilcox, Robert Calderbank, Lawrence Cari, "Designed Measurements for Vector Count Data" NIPS Proceedings 2013 Curran Associates, Inc., PP 1142--1150. http://papers.nips.cc/paper/5091-designed-measurements-for-vector-count-data.pdf
  • Jones, C., Gao, L., Perkins, D. et al. 2013. Field Test of the Integrated Computational Elements: A New Optical Sensor for Downhole Fluid Analysis. Presented at the SPWLA 54th Annual Logging Symposium, New Orleans, Louisiana, 22–26 June. SPWLA-2013-YY.
  • Maltas, D.C.; Kwok, K.; Wang, P.; Taylor, L.S.; Ben-Amotz, D.; (June 2013), Rapid classification of pharmaceutical ingredients with Raman spectroscopy using compressive detection strategy with PLS-DA multivariate filters, Journal of Pharmaceutical and Biomedical Analysis, V 80, P 63-68, doi.org/10.1016/j.jpba.2013.02.029
  • Eriksen, K.O. (Statoil), Jones, C.M., Freese, R. et al. 2013. Field Tests of a New Optical Sensor Based on Integrated Computational. Presented at SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, 30 September–2 October. SPE-166415-MS. doi:10.2118/166415-MS.
  • Swanstrom, J.A.; Bruckman, L.S; Pearl, M.R.; et al. (2013). "Taxonomic Classification of Phytoplankton with Multivariate Optical Computing, Part I: Design and Theoretical Performance of Multivariate Optical Elements". Applied Spectroscopy. 67 (6): 220–229. Bibcode:2013ApSpe..67..620S. doi:10.1366/12-06783.
  • Swanstrom, J.A.; Bruckman, L.S.; Pearl, M.R.; et al. (2013). "Taxonomic Classification of Phytoplankton with Multivariate Optical Computing, Part II: Design and Experimental Protocol of a Shipboard Fluorescence Imaging Photometer". Applied Spectroscopy. 67 (6): 230–239. Bibcode:2013ApSpe..67..630S. doi:10.1366/12-06784.
  • Pearl, M.R.; Swanstrom, J.A.; Bruckman, L.S.; et al. (2013). "Taxonomic Classification of Phytoplankton with Multivariate Optical Computing, Part III: Demonstration". Applied Spectroscopy. 67 (6): 240–247. Bibcode:2013ApSpe..67..640P. doi:10.1366/12-06785.
  • Jones, C.M., Freese, B., Pelletier, M. et al. 2012. Laboratory Quality Optical Analysis in Harsh Environments. Presented at the SPE Kuwait International Petroleum Conference and Exhibition, Kuwait City, Kuwait, 10–12 December. SPE-163289-MS. doi:10.2118/163289-MS.
  • Wilcox, DS;  Buzzard, GT,  Lucier, BJ;  Wang, P; (November 28, 2012), Photon level chemical classification using digital compressive detection. Analytica Chimica Acta V755, N28, Elsevier PP 17-27. https://doi.org/10.1016/j.aca.2012.10.005
  • Smith, Z.J., Strombom, S., and Wachsmann-Hogiu, S. 2011. Multivariate Optical Computing for Biological Samples using a Digital Micromirror Device. Presented at Frontiers in Optics (FiO)/Laser Science (LS) XXVII, San Jose, California,16–20 October. Paper FTuO4. doi:10.1364/FIO.2011.FTuO4.
  • Davis, B.M.; Hemphill, A.J.; Maltaş, D.C.; et al. (2011). "Multivariate Hyperspectral Raman Imaging Using Compressive Detection". Analytical Chemistry. 83 (13): 5086–5092. doi:10.1021/ac103259v.
  • Smith, Z.J.; Strombom, S.; Wachsmann-Hogiu, S. (2011). "Multivariate optical computing using a digital micromirror device for fluorescence and Raman spectroscopy". Optics Express. 19 (18): 16950–16962. Bibcode:2011OExpr..1916950S. doi:10.1364/OE.19.016950.
  • Gutierrez-Osuna, R.; Hierlemann, A. (2010). "Adaptive Microsensor Systems". Annual Review of Analytical Chemistry. 3 (1): 255–76. Bibcode:2010ARAC....3..255G. doi:10.1146/annurev.anchem.111808.073620. PMID 20636042.
  • Toshiyasu, T.; Wu, Y.; Small, G.W. (2009). "Multivariate Calibration with Basis Functions Derived from Optical Filters". Analytical Chemistry. 81 (6): 2199–2207. doi:10.1021/ac802023w. PMID 19206531.
  • Fratkin, M. 2008. On-Line Oil Quality Sensors. Presented at the CTMA Symposium, Baltimore, Maryland, 7–9 April. http://www.ncms.org/wp-content/NCMS_files/CTMA/Symposium2008/presentations/Tues%20T2%201630%20On-Line%20Oil%20Qual_Fratkin.pdf.
  • Profeta, L.T.M.; Myrick, M.L. (2007). "Spectral resolution in multivariate optical computing". Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 67 (2): 483–502. Bibcode:2007AcSpA..67..483P. doi:10.1016/j.saa.2006.08.006.
  • Simcock, M.N.; Myrick, M.L. (2007). "Precision in imaging multivariate optical computing". Applied Optics. 46 (7): 1066–1080. Bibcode:2007ApOpt..46.1066S. doi:10.1364/AO.46.001066.
  • Boysworth, M.K.; Banerija, S.; Wilson, D.M.; et al. (2007). "Generalization of multivariate optical computations as a method for improving the speed and precision of spectroscopic analyses". Journal of Chemometrics. 22 (6): 355–365. doi:10.1002/cem.1132.
  • Uula Kantojärvi, Kai Viherkanto, Ville Aallos, Heikki Saari, Esko Herrala, and Bernd Harnisch "Performance of the Imaging Spectral Signature Instrument (ISSI) breadboard", Proc. SPIE 6744, Sensors, Systems, and Next-Generation Satellites XI, 67441V (17 October 2007); https://doi.org/10.1117/12.737800
  • Dai, B.; Urbas, A.; Douglas, C.C.; et al. (2007). "Molecular Factor Computing for Predictive Spectroscopy". Pharmaceutical Research. 24 (8): 1441–1449. CiteSeerX 10.1.1.141.5296. doi:10.1007/s11095-007-9260-1. PMID 17380265.
  • Uzunbajakava, N.; de Peinder, P.; Hooft, G.W.; et al. (2006). "Low-Cost Spectroscopy with a Variable Multivariate Optical Element". Analytical Chemistry. 78 (20): 7302–7308. doi:10.1021/ac060985o. PMID 17037936.
  • Mendendorp, J.; Lodder, R.A. (2005). "Applications of integrated sensing and processing in spectroscopic imaging and sensing". Journal of Chemometrics. 19 (10): 533–542. CiteSeerX 10.1.1.141.4078. doi:10.1002/cem.961.
  • Coates, J. 2005. A New Approach to Near- and Mid-Infrared Process Analysis - Encoded photometric infrared technology has the ability to address the demands of modern process applications, including those of the PAT initiative. Spectroscopy 20 (1): 32–35.
  • Vogt, F.; Dable, B.; Cramer, J.; et al. (2004). "Recent advancements in chemometrics for smart sensors". Analyst. 129 (6): 492–502. Bibcode:2004Ana...129..492V. doi:10.1039/B401202J. PMID 15152324.
  • Haibach, F.G.; Myrick, M.L. (2004). "Precision in Multivariate Optical Computing". Applied Optics. 43 (10): 2130–2140. Bibcode:2004ApOpt..43.2130H. doi:10.1364/AO.43.002130. PMID 15074423.
  • Priore, R.J.; Haibach, F.G.; Schiza, M.V.; et al. (2004). "A Miniature Stereo Spectral Imaging System for Multivariate Optical Computing". Applied Spectroscopy. 58 (7): 870–873. Bibcode:2004ApSpe..58..870P. doi:10.1366/0003702041389418.
  • Haibach, F.G.; Greer, A.E.; Schiza, M.V.; et al. (2003). "On-line reoptimization of filter designs for multivariate optical elements". Applied Optics. 42 (10): 1833–1838. Bibcode:2003ApOpt..42.1833H. doi:10.1364/AO.42.001833.
  • Priore, R.J., Greer, A.E., Haibach, F.G. et al. 2003. Novel Imaging Systems: Multivariate Optical Computing in the UV-VIS. In Proc., IS&T's NIP19: International Conference on Digital Printing Technologies, Vol. 19, 906–910. New Orleans, Louisiana. http://www.chem.sc.edu/faculty/myrick/pdf/Proc_NIP/2003_19_906-910.pdf.
  • Richard A. DeVerse, Ronald Raphael Coifman, Andreas C. Coppi, William G. Fateley, Frank Geshwind, Robert M. Hammaker, Sam Valenti, Fred J. Warner, Gus L. Davis, "Application of spatial light modulators for new modalities in spectrometry and imaging," Proc. SPIE 4959, Spectral Imaging: Instrumentation, Applications, and Analysis II, (2 July 2003); doi:10.1117/12.477941; https://doi.org/10.1117/12.477941
  • Qu, J.Y.; Chang, H.; Xiong, S. (2002). "Fluorescence spectral imaging for characterization of tissue based on multivariate statistical analysis". Journal of the Optical Society of America A. 19 (9): 1823–1831. Bibcode:2002JOSAA..19.1823Q. doi:10.1364/JOSAA.19.001823.
  • Soyemi, O.O.; Haibach, F.G.; Gemperline, P.J.; et al. (2002). "Design of angle-tolerant multivariate optical elements for chemical imaging". Applied Optics. 41 (10): 1936–1941. Bibcode:2002ApOpt..41.1936S. doi:10.1364/AO.41.001936.
  • Soyemi, O.O.; Haibach, F.G.; Gemperline, P.J.; et al. (2002). "Nonlinear Optimization Algorithm for Multivariate Optical Element Design" (PDF). Applied Spectroscopy. 56 (4): 477–487. Bibcode:2002ApSpe..56..477S. doi:10.1366/0003702021954935.
  • Myrick, M.L. (2002). "Multivariate optical elements simplify spectroscopy". Laser Focus World. 38 (3): 91–94.
  • Myrick, M.L, Soyemi, O.O., Haibach, F.G. et al. 2002. Application of multivariate optical computing to near-infrared imaging. In Proc. SPIE 4577, Vibrational Spectroscopy-based Sensor Systems, eds. S.D. Christesen and A.J. Sedlacek III, 148–157. Boston, Massachusetts, 13 February. doi:10.1117/12.455732.
  • Myrick, M.L., Soyemi, O.O., Schiza, M.V. et al. 2002. Application of multivariate optical computing to simple near-infrared point measurements. In Proc. SPIE 4574, Instrumentation for Air Pollution and Global Atmospheric Monitoring, eds. J.O. Jensen and R.L. Spellicy, 208–215. Boston, Massachusetts, 12 February. doi:10.1117/12.455161.
  • Myrick, M.L.; Soyemi, O.; Karunamuni, J.; et al. (2002). "A single-element all-optical approach to chemometric prediction" (PDF). Vibrational Spectroscopy. 28 (1): 73–81. doi:10.1016/s0924-2031(01)00160-6.
  • Soyemi, O.; Eastwood, D.; Zhang, L.; et al. (2001). "Design and Testing of a Multivariate Optical Element: The First Demonstration of Multivariate Optical Computing for Predictive Spectroscopy". Analytical Chemistry. 73 (6): 1069–1079. doi:10.1021/ac0012896.
  • Myrick, M.L.; Soyemi, O.; Li, H.; et al. (2001). "Spectral tolerance determination for multivariate optical element design" (PDF). Fresenius' Journal of Analytical Chemistry. 369 (3–4): 351–355. doi:10.1007/s002160000642.
  • Soyemi, O.O., Zhang, L., Eastwood, D. et al. 2001. A Simple Optical Computing Device for Chemical Analysis. In Proc. SPIE 4284, Functional Integration of Opto-Electro-Mechanical Devices and Systems, eds. M.R. Descour and J.T. Rantala, 17–28. San Jose, California, 15 May. doi:10.1117/12.426870.
  • Miyazawa, K., Hauta-Kasari, M. & Toyooka, S. OPT REV (March 2001) Rewritable Broad-Band Color Filters for Spectral Image Analysis. Optical Review, V8: N112. Springer, PP 112-119. https://doi.org/10.1007/s10043-001-0112-7
  • Soyemi, O.O., Gemperline, P.J., Zhang, L. et al. 2001. Novel Filter Design Algorithm for Multivariate Optical Computing. In Proc. SPIE 4205, Advanced Environmental and Chemical Sensing Technology, eds. T. Vo-Dinh and S. Buettgenbach, 288–299. Boston, Massachusetts, 26 February. doi:10.1117/12.417462.
  • Eastwood, D., Soyemi, O., Karunamuni, J. et al. 2001. Field applications of stand-off sensing using visible/NIR multivariate optical computing. In Proc. SPIE 4199, Water, Ground, and Air Pollution Monitoring and Remediation, eds. T. Vo-Dinh and R.L. Spellicy, 105–114. Boston, Massachusetts, 14 February. doi:10.1117/12.417366.
  • Myrick, M.L. 1999. New approaches to implementing predictive spectroscopy. In Proc. SPIE 3854, Pattern Recognition, Chemometrics, and Imaging for Optical Environmental Monitoring, eds. K.J. Siddiqui and D. Eastwood, 98–102. Boston, Massachusetts, 16 December. doi:10.1117/12.372890.
  • Stephen M. Gentry and Richard M. Levenson "Biomedical applications of the information-efficient spectral imaging sensor (ISIS)", Proc. SPIE 3603, Systems and Technologies for Clinical Diagnostics and Drug Discovery II, (21 April 1999); https://doi.org/10.1117/12.346734
  • Prakash, AMC;  Stellman, CM;  Booksh, KS; (March 15, 2019), Optical regression: a method for improving quantitative precision of multivariate prediction with single channel spectrometers. Chemometric and Intelligent Laboratory Systems. V46, N2, Elsevier PP 265-274, https://doi.org/10.1016/S0169-7439(98)00176-2
  • William C. Sweatt, Clinton Andrew A. Boye, Stephen M. Gentry, Michael R. Descour, Brian R. Stallard, and Carter L. Grotbeck "ISIS: an information-efficient spectral imaging system", Proc. SPIE 3438, Imaging Spectrometry IV, (16 October 1998); https://doi.org/10.1117/12.328092
  • Brian R. Stallard and Stephen M. Gentry "Construction of filter vectors for the information-efficient spectral imaging sensor", Proc. SPIE 3438, Imaging Spectrometry IV, (16 October 1998); https://doi.org/10.1117/12.328100
  • Nelson, M.P.; Aust, J.F.; Dobrowolski, J.A.; et al. (1998). "Multivariate Optical Computation for Predictive Spectroscopy". Analytical Chemistry. 70 (1): 73–82. doi:10.1021/ac970791w. PMID 21644602.
  • Nelson, M.P., Aust, J.F., Dobrowolski, J.A. et al. 1998. Multivariate optical computation for predictive spectroscopy. In Proc. SPIE 3261, Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing V, eds. C.J. Cogswell, J-A. Conchello, J.M. Lerner, T.T. Lu, and T. Wilson, 232–243. San Jose, California, 9 June. doi:10.1117/12.310558.
  • Dobrowolski, J.A., Verly, P.G., Myrick, M.L. et al. 1997. Design of thin-films for the monitoring of chemical reactions. In Proc. SPIE 3133, Optical Thin Films V: New Developments, ed. R.L. Hall, 38–45. San Diego, California, 1 October. doi:10.1117/12.290200.
  • Bialkowski, S (1986). "Species discrimination and quantitative estimation using incoherent linear optical signal processing of emission signals". Analytical Chemistry. 58 (12): 2561–2563. doi:10.1021/ac00125a043.