From Wikipedia, the free encyclopedia
In mathematics, specifically in category theory , Day convolution is an operation on functors that can be seen as a categorified version of function convolution . It was first introduced by Brian Day in 1970 [ 1] in the general context of enriched functor categories . Day convolution acts as a tensor product for a monoidal category structure on the category of functors
[
C
,
V
]
{\displaystyle [\mathbf {C} ,V]}
over some monoidal category
V
{\displaystyle V}
.
Definition
Let
C
{\displaystyle \mathbf {C} }
be a symmetric monoidal category enriched over a monoidal category
V
{\displaystyle V}
. Given two functors
F
,
G
:
C
→
V
{\displaystyle F,G\colon \mathbf {C} \to V}
, we define their Day convolution as the following coend.[ 2]
F
∗
G
=
∫
x
,
y
∈
C
C
(
x
⊗
y
,
−
)
⊗
F
x
⊗
G
y
{\displaystyle F\ast G=\int ^{x,y\in \mathbf {C} }\mathbf {C} (x\otimes y,-)\otimes Fx\otimes Gy}
If the category
V
{\displaystyle V}
is a symmetric monoidal closed category, we can show this defines an associative monoidal product.
(
F
⊗
d
G
)
⊗
d
H
=
∫
c
1
,
c
2
(
F
⊗
d
G
)
c
1
⊗
H
c
2
⊗
C
(
c
1
⊗
c
2
,
−
)
=
∫
c
1
,
c
2
(
∫
c
3
,
c
4
F
c
3
⊗
G
c
4
⊗
C
(
c
3
⊗
c
4
,
c
1
)
)
⊗
H
c
2
⊗
C
(
c
1
⊗
c
2
,
−
)
=
∫
c
1
,
c
2
,
c
3
,
c
4
F
c
3
⊗
G
c
4
⊗
H
c
2
⊗
C
(
c
3
⊗
c
4
,
c
1
)
⊗
C
(
c
1
⊗
c
2
,
−
)
=
∫
c
1
,
c
2
,
c
3
,
c
4
F
c
3
⊗
G
c
4
⊗
H
c
2
⊗
C
(
c
3
⊗
c
4
⊗
c
2
,
−
)
=
∫
c
1
,
c
2
,
c
3
,
c
4
F
c
3
⊗
G
c
4
⊗
H
c
2
⊗
C
(
c
2
⊗
c
4
,
c
1
)
⊗
C
(
c
3
⊗
c
1
,
−
)
=
∫
c
1
c
3
F
c
3
⊗
(
G
⊗
d
H
)
c
1
⊗
C
(
c
3
⊗
c
1
,
−
)
=
F
⊗
d
(
G
⊗
d
H
)
{\displaystyle {\begin{aligned}&(F\otimes _{d}G)\otimes _{d}H\\[5pt]={}&\int ^{c_{1},c_{2}}(F\otimes _{d}G)c_{1}\otimes Hc_{2}\otimes \mathbf {C} (c_{1}\otimes c_{2},-)\\[5pt]={}&\int ^{c_{1},c_{2}}\left(\int ^{c_{3},c_{4}}Fc_{3}\otimes Gc_{4}\otimes \mathbf {C} (c_{3}\otimes c_{4},c_{1})\right)\otimes Hc_{2}\otimes \mathbf {C} (c_{1}\otimes c_{2},-)\\[5pt]={}&\int ^{c_{1},c_{2},c_{3},c_{4}}Fc_{3}\otimes Gc_{4}\otimes Hc_{2}\otimes \mathbf {C} (c_{3}\otimes c_{4},c_{1})\otimes \mathbf {C} (c_{1}\otimes c_{2},-)\\[5pt]={}&\int ^{c_{1},c_{2},c_{3},c_{4}}Fc_{3}\otimes Gc_{4}\otimes Hc_{2}\otimes \mathbf {C} (c_{3}\otimes c_{4}\otimes c_{2},-)\\[5pt]={}&\int ^{c_{1},c_{2},c_{3},c_{4}}Fc_{3}\otimes Gc_{4}\otimes Hc_{2}\otimes \mathbf {C} (c_{2}\otimes c_{4},c_{1})\otimes \mathbf {C} (c_{3}\otimes c_{1},-)\\[5pt]={}&\int ^{c_{1}c_{3}}Fc_{3}\otimes (G\otimes _{d}H)c_{1}\otimes \mathbf {C} (c_{3}\otimes c_{1},-)\\[5pt]={}&F\otimes _{d}(G\otimes _{d}H)\end{aligned}}}
References
^ Day, Brian (1970). "On closed categories of functors". Reports of the Midwest Category Seminar IV, Lecture Notes in Mathematics . 139 : 1– 38.
^ Loregian, Fosco (2015). "This is the (co)end, my only (co)friend". p. 51. arXiv :1501.02503 [math.CT ].
External links