Integration using parametric derivatives
It is proposed that this article be deleted because of the following concern:
If you can address this concern by improving, copyediting, sourcing, renaming, or merging the page, please edit this page and do so. You may remove this message if you improve the article or otherwise object to deletion for any reason. Although not required, you are encouraged to explain why you object to the deletion, either in your edit summary or on the talk page. If this template is removed, do not replace it. This message has remained in place for seven days, so the article may be deleted without further notice. Find sources: "Integration using parametric derivatives" – news · newspapers · books · scholar · JSTOR Timestamp: 20190722222703 22:27, 22 July 2019 (UTC) Administrators: delete |
![]() | This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
|
In calculus, integration by parametric derivatives, also called parametric integration,[1] is a method of integrating certain functions.
Example
For example, suppose we want to find the integral
Since this is a product of two functions that are simple to integrate separately, repeated integration by parts is certainly one way to evaluate it. However, we may also evaluate this by starting with a simpler integral and an added parameter, which in this case is t = 3:
This converges only for t > 0, which is true of the desired integral. Now that we know
we can differentiate both sides twice with respect to t (not x) in order to add the factor of x2 in the original integral.
This is the same form as the desired integral, where t = 3. Substituting that into the above equation gives the value:
References
- ^ Zatja, Aurel J. (December 1989). "Parametric Integration Techniques | Mathematical Association of America" (PDF). www.maa.org. Mathematics Magazine. Retrieved 23 July 2019.