Jump to content

Nanoinformatics

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by John P. Sadowski (NIOSH) (talk | contribs) at 05:13, 29 May 2019 (organization). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Nanoinformatics is the application of informatics to nanotechnology. It is an interdisciplinary field that develops methods and software tools for understanding nanomaterials and their interactions with biological entities, and using that information more efficiently. It differs from cheminformatics in that nanomaterials usually involve nonuniform collections of particles that have distributions of physical properties that must be specified. The nanoinformatics infrastructure includes ontologies for nanomaterials, file formats, and data repositories.

Nanoinformatics has applications for improving workflows in fundamental research, manufacturing, and environmental health, allowing the use of high-throughput data-driven methods to analyze broad sets of experimental results. Nanomedicine applications include analysis of nanoparticle-based pharmaceuticals for structure–activity relationships in a similar manner to bioinformatics.

Background

Context of nanoinformatics as a convergence of science and practice at the nexus of safety, health, well-being, and productivity; risk management; and emerging nanotechnology.

While conventional chemicals are specified by their chemical composition and concentration, nanoparticles have other physical properties that must be measured for a complete description, such as size, shape, surface properties, crystallinity, and dispersion state. In addition, preparations of nanoparticles are often non-uniform, having distributions of of these properties that must also be specified. These properties influence their bulk chemical and physical properties, as well as their biological effects. They are important in both the experimental characterization of nanoparticles and their representation in an informatics system.[1][2]

The context of nanoinformatics is that effective development and implementation of the imagined applications of nanotechnology requires the harnessing of information at the intersection of safety, health, well-being, and productivity; risk management; and emerging nanotechnology.[citation needed]

A graphical representation of a working definition of nanoinformatics as a life-cycle process

One working definition of nanoinformatics developed through the community-based Nanoinformatics 2020 Roadmap[3] and subsequently expanded[4] is:

  • Determining which information is relevant to meeting the safety, health, well-being, and productivity objectives of the nanoscale science, engineering, and technology community;
  • Developing and implementing effective mechanisms for collecting, validating, storing, sharing, analyzing, modeling, and applying the information;
  • Confirming that appropriate decisions were made and that desired mission outcomes were achieved as a result of that information; and finally
  • Conveying experience to the broader community, contributing to generalized knowledge, and updating standards and training.

Data representations

Although nanotechnology is the subject of significant experimentation, most of the data is not stored in a standardized format or shared. Nanoinformatics initiatives seek to coordinate developments of data standards and informatics methods.[3]

Ontologies

An overview of the eNanoMapper nanomaterial ontology

In the context of information science, an ontology is a formal representation of knowledge within a domain, using hierarchies of terms including their definitions, attributed, and relations. Ontologies provide a common terminology in a machine-readable framework that facilitates sharing and discovery of data. Having an established ontology for nanoparticles is important for cancer nanomedicine due to the need of researchers to search, access, and analyze large amounts of data.[5]

The NanoParticle Ontology is an ontology for the preparation, chemical composition, and characterization of nanomaterials involved in cancer research. It uses the Basic Formal Ontology framework and is implemented in the Web Ontology Language. It is hosted by the National Center for Biomedical Ontology and maintained on GitHub.[5] The eNanoMapper Ontology is more recent and reuses wherever possible already existing domain ontologies. As such, it reuses and extends the NanoParticle Ontology, but also the BioAssay Ontology, Unit Ontology, and ChEBI.[6]

File formats

Flowchart depicting the ways to identify different components of a material sample to guide the creation of an ISA-TAB-Nano Material file

ISA-TAB-Nano is a set of four spreadsheet-based file formats for representing and sharing nanomaterial data, based on the ISA-TAB metadata standard.[7]

Tools

Nanoinformatics is not limited to aggregating and sharing information about nanotechnologies, but has many complementary tools, some originating from chemoinformatics and bioinformatics.

Databases and repositories

Over the last couple of years, various databases have been made available.[8] caNanoLab, developed by the U.S. National Cancer Institute, focuses on nanotechnologies related to biomedicine.[9] The NanoMaterials Registry, maintained by RTI International, is a curated database of nanomaterials, and includes data from caNanoLab.[10] The eNanoMapper database, a project of the EU NanoSafety Cluster, instance is an example deployment of the database software developed in the eNanoMapper project.[11] It has been since used in other settings, such as the EU Observatory for NanoMaterials (EUON).[12][13] Other databases include the Center for the Environmental Implications of NanoTechnology's NanoInformatics Knowledge Commons (NIKC),[14] PEROSH's Nano Exposure & Contextual Information Database (NECID),[15] and Data and Knowledge on Nanomaterials (DaNa).[16]

Applications

Nanoinformatics has applications for improving workflows in fundamental research, manufacturing, and environmental health, allowing the use of high-throughput data-driven methods to analyze broad sets of experimental results.[3]

Nanoinformatics is especially applicable to nanoparticle-based cancer diagnostics and therapeutics. They are very diverse in nature due to the combinatorially large numbers of chemical and physical modifications that can be made to them, which can cause drastic changes in their functional properties. This leads to a combinatorial complexity that far exceeds, for example, genomic data. Nanoinformatics can enable structure–activity relationship modelling for nanoparticle-based drugs.[5]

Modeling and NanoQSAR

Viewed as a workflow process [1][citation needed], nanoinformatics deconstructs experimental studies using data, metadata, controlled vocabularies and ontologies to populate databases so that trends, regularities and theories will be uncovered for use as predictive computational tools. Models are involved at each stage, some material (experiments, reference materials, model organisms) and some abstract (ontology, mathematical formulae), and all intended as a representation of the target system. Models can be used in experimental design, may substitute for experiment or may simulate how a complex system changes over time.[2][citation needed]

At present, nanoinformatics is an extension of bioinformatics due to the great opportunities for nanotechnology in medical applications, as well as to the importance of regulatory approvals to product commercialization. In these cases, the models target, their purposes, may be physico-chemical, estimating a property based on structure (quantitative structure–property relationship, QSPR); or biological, predicting biological activity based on molecular structure (quantitative structure–activity relationship, QSAR) or the time-course development of a simulation (physiologically based toxicokintics, PBTK) [3,4][citation needed]. Each of these has been explored for small molecule drug development with a supporting body of literature.

Particles differ from molecular entities, especially in having surfaces that challenge nomenclature system and QSAR/PBTK model development. For example, particles do not exhibit an octanol–water partition coefficient, which acts as a motive force in QSAR/PBTK models; and they may dissolve in vivo or have band gaps. [5][citation needed]. Illustrative of current QSAR and PBTK models are those of Puzyn et al, and Bachler et al. [6, 7][citation needed] The OECD has codified regulatory acceptance criteria [8][citation needed], and there are guidance roadmaps [9 , 10][citation needed] with supporting workshops [11][citation needed] to coordinate international efforts.

Communities

Communities active in nanoinformatics include the European Union NanoSafety Cluster,[17] The U.S. National Cancer Institute National Cancer Informatics Program's Nanotechnology Working Group,[18][19] and the US–EU Nanotechnology Communities of Research.[20]

Nanoinformatics roles, responsibilities, and communication interfaces

Individuals who engage in nanoinformatics can be viewed as fitting across four categories of roles and responsibilities for nanoinformatics methods and data:[citation needed]

  • Customers, who need either the methods to create the data, the data itself, or both, and who specify the scientific applications and characterization methods and data needs for their intended purposes;
  • Creators, who develop relevant and reliable methods and data to meet the needs of customers in the nanotechnology community;
  • Curators, who maintain and ensure the quality of the methods and associated data; and
  • Analysts, who develop and apply methods and models for data analysis and interpretation that are consistent with the quality and quantity of the data and that meet customers’ needs.

In some instances, the same individuals perform all four roles. More often, many individuals must interact, with their roles and responsibilities extending over significant distances, organizations, and time. Effective communication is important across each of the twelve links (in both directions across each of the six pairwise interactions) that exist among the various customers, creators, curators, and analysts.[citation needed]

History

One of the first mentions of nanoinformatics was in the context of handling information about nanotechnology.[21]

The National Cancer Institute prepared in 2009 a rough vision of, what was then still called, nanotechnology informatics,[22] outlining various aspects of what nanoinformatics should comprise. This was later followed by two roadmaps, detailing existing solutions, needs, and ideas on how the field should further develop: the Nanoinformatics 2020 Roadmap[3] and the EU US Roadmap Nanoinformatics 2030.[23]

References

  1. ^ Hassellöv, Martin; Readman, James W.; Ranville, James F.; Tiede, Karen (2008-07-01). "Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles". Ecotoxicology. 17 (5): 344–361. doi:10.1007/s10646-008-0225-x. ISSN 0963-9292. PMID 18483764.
  2. ^ Powers, Kevin W.; Palazuelos, Maria; Moudgil, Brij M.; Roberts, Stephen M. (2007-01-01). "Characterization of the size, shape, and state of dispersion of nanoparticles for toxicological studies". Nanotoxicology. 1 (1): 42–51. doi:10.1080/17435390701314902. ISSN 1743-5390.
  3. ^ a b c d Diana, De la Iglesia; Stacey, Harper; Mark D, Hoover; Fred, Klaessig; Phil, Lippell; Bettye, Maddux; Jeffrey, Morse; Andre, Nel; Krishna, Rajan; Rebecca, Reznik-Zellen; Mark T., Tuominen (2011). "Nanoinformatics 2020 Roadmap" (PDF). National Nanomanufacturing Network. pp. 9–13. doi:10.4053/rp001-110413. {{cite web}}: Cite has empty unknown parameter: |dead-url= (help)
  4. ^ Hoover, Mark D.; Myers, David S.; Cash, Leigh J.; Guilmette, Raymond A.; Kreyling, Wolfgang G.; Oberdörster, Günter; Smith, Rachel; Cassata, James R.; Boecker, Bruce B. (2015-02-01). "Application of an Informatics-Based Decision-Making Framework and Process to the Assessment of Radiation Safety in Nanotechnology:". Health Physics. 108 (2): 179–194. doi:10.1097/HP.0000000000000250. ISSN 0017-9078.
  5. ^ a b c Thomas, Dennis G.; Pappu, Rohit V.; Baker, Nathan A. (February 2011). "NanoParticle Ontology for cancer nanotechnology research". Journal of Biomedical Informatics. 44 (1): 59–74. doi:10.1016/j.jbi.2010.03.001.
  6. ^ Hastings, Janna; Jeliazkova, Nina; Owen, Gareth; Tsiliki, Georgia; Munteanu, Cristian R; Steinbeck, Christoph; Willighagen, Egon (21 March 2015). "eNanoMapper: harnessing ontologies to enable data integration for nanomaterial risk assessment". Journal of Biomedical Semantics. 6 (1). doi:10.1186/s13326-015-0005-5.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  7. ^ Thomas, Dennis G; Gaheen, Sharon; Harper, Stacey L; Fritts, Martin; Klaessig, Fred; Hahn-Dantona, Elizabeth; Paik, David; Pan, Sue; Stafford, Grace A (2013). "ISA-TAB-Nano: A Specification for Sharing Nanomaterial Research Data in Spreadsheet-based Format". BMC Biotechnology. 13 (1): 2. doi:10.1186/1472-6750-13-2. ISSN 1472-6750. PMC 3598649. PMID 23311978.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  8. ^ Willighagen, Egon; Jeliazkov, Vedrin; Jeliazkova, Nina; Smeets, Bart; P. Mustad, Axel (7 October 2014). "Summary of the Spring 2014 NSC Database Survey". Figshare. doi:10.6084/m9.figshare.1195888.v1. Retrieved 16 May 2019.
  9. ^ Gaheen, Sharon; Hinkal, George W; Morris, Stephanie A; Lijowski, Michal; Heiskanen, Mervi; Klemm, Juli D (21 November 2013). "caNanoLab: data sharing to expedite the use of nanotechnology in biomedicine". Computational Science & Discovery. 6 (1): 014010. doi:10.1088/1749-4699/6/1/014010.
  10. ^ Mills, Karmann; Ostraat, Michele L; Guzan, Kimberly; Murry, Damaris (September 2013). "The Nanomaterial Registry: facilitating the sharing and analysis of data in the diverse nanomaterial community". International Journal of Nanomedicine: 7. doi:10.2147/IJN.S40722.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  11. ^ Jeliazkova, Nina; Chomenidis, Charalampos; Doganis, Philip; Fadeel, Bengt; Grafström, Roland; Hardy, Barry; Hastings, Janna; Hegi, Markus; Jeliazkov, Vedrin; Kochev, Nikolay; Kohonen, Pekka; Munteanu, Cristian R; Sarimveis, Haralambos; Smeets, Bart; Sopasakis, Pantelis; Tsiliki, Georgia; Vorgrimmler, David; Willighagen, Egon (27 July 2015). "The eNanoMapper database for nanomaterial safety information". Beilstein Journal of Nanotechnology. 6: 1609–1634. doi:10.3762/bjnano.6.165.
  12. ^ "Echa launches EU nanomaterials observatory". Chemical Watch. 15 June 2017. Retrieved 29 March 2019.
  13. ^ "Echa adds new databases to EU nanomaterials observatory". Chemical Watch. 12 June 2018. Retrieved 29 March 2019.
  14. ^ "Center for the Environmental Implications of NanoTechnology". Center for the Environmental Implications of NanoTechnology. {{cite web}}: Cite has empty unknown parameter: |dead-url= (help)
  15. ^ "Nano Exposure & Contextual Information Database (NECID)". Partnership for European Research in Occupational Safety and Health (PEROSH). Retrieved 2019-05-24. {{cite web}}: Cite has empty unknown parameter: |dead-url= (help)
  16. ^ "Nanoparticles & Nanomaterials Knowledge Base". Data and Knowledge on Nanomaterials. {{cite web}}: Cite has empty unknown parameter: |dead-url= (help)
  17. ^ "About the NanoSafety Cluster". EU NanoSafety Cluster. Retrieved 2019-05-28. {{cite web}}: Cite has empty unknown parameter: |dead-url= (help)
  18. ^ "NCIP Hub - Group: Nanotechnology Working Group (Nano WG)". nciphub.org. Retrieved 2019-05-28.
  19. ^ "Nanotechnology Working Group". U.S. National Cancer Institute. Retrieved 2019-05-28. {{cite web}}: Cite has empty unknown parameter: |dead-url= (help)
  20. ^ "US–EU Nanotechnology Communities of Research". US–EU Nanotechnology Communities of Research. Retrieved 2019-05-28. {{cite web}}: Cite has empty unknown parameter: |dead-url= (help)
  21. ^ Porter, Alan L.; Youtie, Jan; Shapira, Philip; Schoeneck, David J. (3 August 2007). "Refining search terms for nanotechnology". Journal of Nanoparticle Research. 10 (5): 715–728. doi:10.1007/s11051-007-9266-y.
  22. ^ Baker, Nathan (February 2009). Nanotechnology Informatics White Paper.
  23. ^ "EU US Roadmap Nanoinformatics 2030". EU NanoSafety Cluster. 2018-11-15. Retrieved 2019-04-24. {{cite web}}: Cite has empty unknown parameter: |dead-url= (help)

See also

Category:Information science by discipline Category:Nanotechnology